Hierarchical forecasting problems arise when time series have a natural group structure, and predictions at multiple levels of aggregation and disaggregation across the groups are needed. In such problems, it is often desired to satisfy the aggregation constraints in a given hierarchy, referred to as hierarchical coherence in the literature. Maintaining hierarchical coherence while producing accurate forecasts can be a challenging problem, especially in the case of probabilistic forecasting. We present a novel method capable of accurate and coherent probabilistic forecasts for hierarchical time series. We call it Deep Poisson Mixture Network (DPMN). It relies on the combination of neural networks and a statistical model for the joint distribution of the hierarchical multivariate time series structure. By construction, the model guarantees hierarchical coherence and provides simple rules for aggregation and disaggregation of the predictive distributions. We perform an extensive empirical evaluation comparing the DPMN to other state-of-the-art methods which produce hierarchically coherent probabilistic forecasts on multiple public datasets. Compared to existing coherent probabilistic models, we obtained a relative improvement in the overall Continuous Ranked Probability Score (CRPS) of 11.8% on Australian domestic tourism data, and 8.1% on the Favorita grocery sales dataset.
翻译:当时间序列具有自然的分组结构时,就会出现等级性预测问题,而且需要在各个组间进行多层次的汇总和分类预测。在这些问题中,人们往往希望它能够满足某一等级的集合限制,即文献中的等级一致性。保持等级一致性,同时作出准确的预测,可能是一个具有挑战性的问题,特别是在概率预测的情况下。我们提出了一个新颖的方法,能够对等级时间序列进行准确和一致的概率性预测。我们称之为深 Poisson Mixture 网络(DPMN),它依靠神经网络和统计模型的结合,共同分配等级多变数时间序列结构。通过构建,模型保证等级一致性,并为预测分布的汇总和分类提供简单的规则。我们进行了广泛的实证评估,将DPMN 与其他在等级上一致地对多个公共数据集进行概率预测的方法进行比较。与现有的连贯的概率模型相比,我们在澳大利亚国内旅游数据销售11.8%的连续分级概率分数(CRPS)方面取得了相对的改进。