Federated learning (FL) is a promising way to allow multiple data owners (clients) to collaboratively train machine learning models without compromising data privacy. Yet, existing FL solutions usually rely on a centralized aggregator for model weight aggregation, while assuming clients are honest. Even if data privacy can still be preserved, the problem of single-point failure and data poisoning attack from malicious clients remains unresolved. To tackle this challenge, we propose to use distributed ledger technology (DLT) to achieve FLock, a secure and reliable decentralized Federated Learning system built on blockchain. To guarantee model quality, we design a novel peer-to-peer (P2P) review and reward/slash mechanism to detect and deter malicious clients, powered by on-chain smart contracts. The reward/slash mechanism, in addition, serves as incentives for participants to honestly upload and review model parameters in the FLock system. FLock thus improves the performance and the robustness of FL systems in a fully P2P manner.
翻译:联邦学习(FL)是让多个数据所有者(客户)在不损害数据隐私的情况下合作培训机器学习模式的一个很有希望的方法。然而,现有的FL解决方案通常依靠集中的聚合器进行模型加权汇总,同时假设客户诚实。即使数据隐私仍然可以保存,恶意客户的单点失灵和数据中毒袭击问题仍未解决。为了应对这一挑战,我们提议使用分布式分类账技术(DLT)实现FLock,这是一个安全可靠的分散式联邦学习系统,以块链为基础。为了保证模型质量,我们设计了新型的同行评审和奖励/鞭笞机制,以发现和威慑恶意客户,由链式智能合同驱动。奖励/鞭笞机制还作为激励参与者诚实地上传和审查FLock系统模型参数的激励因素。FLock因此以完全P2P方式改进FL系统的性能和稳健性。