Machine learning techniques are increasingly used to predict material behavior in scientific applications and offer a significant advantage over conventional numerical methods. In this work, an Artificial Neural Network (ANN) model is used in a finite element formulation to define the flow law of a metallic material as a function of plastic strain, plastic strain rate and temperature. First, we present the general structure of the neural network, its operation and focus on the ability of the network to deduce, without prior learning, the derivatives of the flow law with respect to the model inputs. In order to validate the robustness and accuracy of the proposed model, we compare and analyze the performance of several network architectures with respect to the analytical formulation of a Johnson-Cook behavior law for a 42CrMo4 steel. In a second part, after having selected an Artificial Neural Network architecture with $2$ hidden layers, we present the implementation of this model in the Abaqus Explicit computational code in the form of a VUHARD subroutine. The predictive capability of the proposed model is then demonstrated during the numerical simulation of two test cases: the necking of a circular bar and a Taylor impact test. The results obtained show a very high capability of the ANN to replace the analytical formulation of a Johnson-Cook behavior law in a finite element code, while remaining competitive in terms of numerical simulation time compared to a classical approach.
翻译:机械学习技术越来越多地用于预测科学应用中的物质行为,并比传统数字方法有很大优势。在这项工作中,人造神经网络模型(ANN)被用在一个有限要素配方中,用于界定金属材料的流程法,以塑料菌株、塑料菌株率和温度为函数。首先,我们介绍了神经网络的一般结构、其运作,并侧重于网络在不事先学习的情况下推断模型投入的流程法衍生物的能力。为了验证拟议模型的稳健性和准确性,我们比较和分析了若干网络结构在42CrMo4钢强氏-Cook行为法的分析拟订方面的性能。在选择了具有2美元隐藏层的人工神经网络结构结构之后,我们以VUHAD子路程的形式介绍了该模型的计算法衍生物的能力。随后在两个测试案例的数字模拟中展示了该模型的预测能力:将硬体-Cook 行为法分析法的颈部与高等级法分析法的精确度测试结果。在A-MARS-C模型分析法的模拟中,在Arental roal Produal Procial Protial Produal ex Protial Production Production Production Production Production Production Production Production Production Production tal ex tal ex ex ex ex ex tal ex tal ex ex ex tal ex ex tal ex ex ex ex t ex t ex extal lection lection lection lection lection lection lection lection lection lection lection lection lection ex lection lection exal tal tal tal tal ex tal ex ex ex ex ex ex ex exal ex ex ex exal tal tal tal tal tal tal tal tal tal tal tal tal tal tal tal tal tal tal ex ex ex ex extaltaltaltaltaltal ex ex ex ex ex ex