Machine learning techniques are increasingly used to predict material behavior in scientific applications and offer a significant advantage over conventional numerical methods. In this work, an Artificial Neural Network (ANN) model is used in a finite element formulation to define the flow law of a metallic material as a function of plastic strain, plastic strain rate and temperature. First, we present the general structure of the neural network, its operation and focus on the ability of the network to deduce, without prior learning, the derivatives of the flow law with respect to the model inputs. In order to validate the robustness and accuracy of the proposed model, we compare and analyze the performance of several network architectures with respect to the analytical formulation of a Johnson-Cook behavior law for a 42CrMo4 steel. In a second part, after having selected an Artificial Neural Network architecture with $2$ hidden layers, we present the implementation of this model in the Abaqus Explicit computational code in the form of a VUHARD subroutine. The predictive capability of the proposed model is then demonstrated during the numerical simulation of two test cases: the necking of a circular bar and a Taylor impact test. The results obtained show a very high capability of the ANN to replace the analytical formulation of a Johnson-Cook behavior law in a finite element code, while remaining competitive in terms of numerical simulation time compared to a classical approach.


翻译:机械学习技术越来越多地用于预测科学应用中的物质行为,并比传统数字方法有很大优势。在这项工作中,人造神经网络模型(ANN)被用在一个有限要素配方中,用于界定金属材料的流程法,以塑料菌株、塑料菌株率和温度为函数。首先,我们介绍了神经网络的一般结构、其运作,并侧重于网络在不事先学习的情况下推断模型投入的流程法衍生物的能力。为了验证拟议模型的稳健性和准确性,我们比较和分析了若干网络结构在42CrMo4钢强氏-Cook行为法的分析拟订方面的性能。在选择了具有2美元隐藏层的人工神经网络结构结构之后,我们以VUHAD子路程的形式介绍了该模型的计算法衍生物的能力。随后在两个测试案例的数字模拟中展示了该模型的预测能力:将硬体-Cook 行为法分析法的颈部与高等级法分析法的精确度测试结果。在A-MARS-C模型分析法的模拟中,在Arental roal Produal Procial Protial Produal ex Protial Production Production Production Production Production Production Production Production Production Production tal ex tal ex ex ex ex ex tal ex tal ex ex ex tal ex ex tal ex ex ex ex t ex t ex extal lection lection lection lection lection lection lection lection lection lection lection lection lection ex lection lection exal tal tal tal tal ex tal ex ex ex ex ex ex ex exal ex ex ex exal tal tal tal tal tal tal tal tal tal tal tal tal tal tal tal tal tal tal ex ex ex ex extaltaltaltaltaltal ex ex ex ex ex ex

0
下载
关闭预览

相关内容

Networking:IFIP International Conferences on Networking。 Explanation:国际网络会议。 Publisher:IFIP。 SIT: http://dblp.uni-trier.de/db/conf/networking/index.html
【2022新书】高效深度学习,Efficient Deep Learning Book
专知会员服务
118+阅读 · 2022年4月21日
专知会员服务
25+阅读 · 2021年4月2日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年10月20日
Arxiv
30+阅读 · 2021年8月18日
VIP会员
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员