Determining the sensitivity of the posterior to perturbations of the prior and likelihood is an important part of the Bayesian workflow. We introduce a practical and computationally efficient sensitivity analysis approach that is applicable to a wide range of models, based on power-scaling perturbations. We suggest a diagnostic based on this that can indicate the presence of prior-data conflict or likelihood noninformativity. The approach can be easily included in Bayesian workflows with minimal work by the model builder. We present the implementation of the approach in our new R package priorsense and demonstrate the workflow on case studies of real data.


翻译:确定后继者对扰动先前和可能性的敏感度是贝耶斯工作流程的一个重要部分。我们采用了一种实用和计算高效的敏感度分析方法,该方法适用于各种模型,基于功率尺度的扰动。我们建议在此基础上进行诊断,可以表明存在先前数据冲突或可能的非信息性。该方法可以很容易地纳入巴耶斯工作流程,模型构建者的工作极少。我们在新的R包预言中介绍了该方法的实施情况,并展示了真实数据案例研究的工作流程。

0
下载
关闭预览

相关内容

专知会员服务
22+阅读 · 2021年9月23日
专知会员服务
33+阅读 · 2021年9月16日
专知会员服务
45+阅读 · 2020年10月31日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
111+阅读 · 2020年5月15日
专知会员服务
62+阅读 · 2020年3月4日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
CCF C类 | DSAA 2019 诚邀稿件
Call4Papers
6+阅读 · 2019年5月13日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
大数据 | 顶级SCI期刊专刊/国际会议信息7条
Call4Papers
10+阅读 · 2018年12月29日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Imitation by Predicting Observations
Arxiv
4+阅读 · 2021年7月8日
Arxiv
10+阅读 · 2021年2月18日
VIP会员
相关VIP内容
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
CCF C类 | DSAA 2019 诚邀稿件
Call4Papers
6+阅读 · 2019年5月13日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
大数据 | 顶级SCI期刊专刊/国际会议信息7条
Call4Papers
10+阅读 · 2018年12月29日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员