This paper develops a unified and computationally efficient method for change-point inference in non-stationary spatio-temporal processes. By modeling a non-stationary spatio-temporal process as a piecewise stationary spatio-temporal process, we consider simultaneous estimation of the number and locations of change-points, and model parameters in each segment. A composite likelihood-based criterion is developed for change-point and parameters estimation. Under the framework of increasing domain asymptotics, theoretical results including consistency and distribution of the estimators are derived under mild conditions. In contrast to classical results in fixed dimensional time series that the localization error of change-point estimator is $O_{p}(1)$, exact recovery of true change-points can be achieved in the spatio-temporal setting. More surprisingly, the consistency of change-point estimation can be achieved without any penalty term in the criterion function. In addition, we further establish consistency of the number and locations of the change-point estimator under the infill asymptotics framework where the time domain is increasing while the spatial sampling domain is fixed. A computationally efficient pruned dynamic programming algorithm is developed for the challenging criterion optimization problem. Extensive simulation studies and an application to U.S. precipitation data are provided to demonstrate the effectiveness and practicality of the proposed method.


翻译:本文为非静止时空进程中的变化点推断制定了一种统一和计算高效的方法。通过将非静止时空进程作为零点的静止时空进程模型,我们考虑同时估计每个部分的变化点的数量和地点以及模型参数。为改变点和参数估计制定了基于可能性的综合标准。在增加域性静默性的框架内,在温和条件下得出理论结果,包括估计者的一致性和分布。与固定的维度时间序列中的传统结果不同,即变更点估计者在固定的时序中的局部化错误是 $ ⁇ p}(1) 美元,因此,在时空环境环境中可以准确恢复真正的变化点。更令人惊讶的是,在标准功能中无需任何惩罚性术语即可实现改变点估计的一致性。此外,我们进一步在填补时空框架下确定变化点估计者的数量和地点的一致性,在固定的时空框架下,变更点估计者在固定的时空框架下,变更点估计值的局部差差差差差差值是 快速的模拟模型分析,在空间优化的模型分析中,在空间优化的模型分析中,对空间优化的模型分析中测算法进行。

0
下载
关闭预览

相关内容

专知会员服务
31+阅读 · 2021年6月12日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
已删除
将门创投
3+阅读 · 2018年11月20日
Arxiv
0+阅读 · 2021年11月16日
Arxiv
5+阅读 · 2018年10月4日
Arxiv
5+阅读 · 2018年5月16日
VIP会员
相关资讯
已删除
将门创投
3+阅读 · 2018年11月20日
Top
微信扫码咨询专知VIP会员