In this paper, we propose a novel video super-resolution method that aims at generating high-fidelity high-resolution (HR) videos from low-resolution (LR) ones. Previous methods predominantly leverage temporal neighbor frames to assist the super-resolution of the current frame. Those methods achieve limited performance as they suffer from the challenge in spatial frame alignment and the lack of useful information from similar LR neighbor frames. In contrast, we devise a cross-frame non-local attention mechanism that allows video super-resolution without frame alignment, leading to be more robust to large motions in the video. In addition, to acquire the information beyond neighbor frames, we design a novel memory-augmented attention module to memorize general video details during the super-resolution training. Experimental results indicate that our method can achieve superior performance on large motion videos comparing to the state-of-the-art methods without aligning frames. Our source code will be released.
翻译:在本文中,我们提出了一个新颖的视频超分辨率方法,目的是从低分辨率(LR)中生成高不洁的高分辨率视频。 以往的方法主要是利用时邻框架来帮助当前框架的超分辨率。 这些方法的绩效有限,因为它们在空间框架对齐方面遇到了挑战,而且缺乏来自类似边框的有用信息。 相反,我们设计了一个跨框架的非本地关注机制,允许视频超分辨率不对齐,从而使得视频对视频中的大动作更加强大。此外,为了获取相邻框架以外的信息,我们设计了一个新颖的记忆增强关注模块,在超分辨率培训中将一般视频细节进行记忆记忆化。 实验结果表明,我们的方法可以在大型视频上实现优异性表现,与不对齐框架的状态方法相比。 我们的源代码将会被发布。