In this paper we consider the current status continuous mark model where, if the event takes place before an inspection time $T$ a "continuous mark" variable is observed as well. A Bayesian nonparametric method is introduced for estimating the distribution function of the joint distribution of the event time ($X$) and mark ($Y$). We consider a prior that is obtained by assigning a distribution on heights of cells, where cells are obtained from a partition of the support of the density of $(X, Y)$. As distribution on cell heights, we consider both a Dirichlet prior and a prior based on the graph-Laplacian on the specified partition. Our main result shows that under appropriate conditions, the posterior distribution function contracts pointwisely at rate $\left(n/\log n\right)^{-\frac{\rho}{3(\rho+2)}}$, where $\rho$ is the H\"older smoothness of the true density. In addition to our theoretical results, we provide computational methods for drawing from the posterior using probabilistic programming. The performance of our computational methods is illustrated in two examples.
翻译:在本文中, 我们考虑的是当前状态连续标记模型, 如果事件发生在检查时间之前, 也观察到了一个“ 连续标记” 变量。 在估计事件时间( X$ ) 和 马克( Y$ ) 联合分布的分布功能时, 采用了一种巴伊西亚非参数方法。 我们考虑的是先在单元格高度上分配, 单元格是从 $( X, Y) 的 密度支持的分隔中获取的。 作为单元格高度的分布, 我们考虑的是基于指定分区的图形- 拉普拉西亚的 Dirichlet 之前和之前。 我们的主要结果显示, 在适当条件下, 后端分配函数合同以 $left (n/\log n\right)\\\\\\\\\\\\\\\\\\\frac\rho\\\% 3 ( rho+2)\\ $, 美元, $\\\\\\\\\\ older lax lax unt 。 除了我们的理论结果外, 我们提供利用 robabitical progration progration prograduclemental 来从后进行绘图的计算方法。