In this paper, we present a novel image inpainting technique using frequency domain information. Prior works on image inpainting predict the missing pixels by training neural networks using only the spatial domain information. However, these methods still struggle to reconstruct high-frequency details for real complex scenes, leading to a discrepancy in color, boundary artifacts, distorted patterns, and blurry textures. To alleviate these problems, we investigate if it is possible to obtain better performance by training the networks using frequency domain information (Discrete Fourier Transform) along with the spatial domain information. To this end, we propose a frequency-based deconvolution module that enables the network to learn the global context while selectively reconstructing the high-frequency components. We evaluate our proposed method on the publicly available datasets CelebA, Paris Streetview, and DTD texture dataset, and show that our method outperforms current state-of-the-art image inpainting techniques both qualitatively and quantitatively.
翻译:在本文中,我们展示了使用频率域信息的新图像绘制技术。 先前的图像绘制工作通过仅使用空间域信息培训神经网络来预测缺失的像素。 但是,这些方法仍然在努力重建真实复杂场景的高频细节,导致颜色、 边界文物、 扭曲的图案和模糊的纹理等差异。 为了缓解这些问题, 我们调查是否有可能通过使用频率域信息( Discrete Fourier 变换) 以及空间域信息来培训网络来获得更好的性能。 为此, 我们提议了一个基于频率的分解模块, 使网络能够在有选择地重建高频组件的同时学习全球背景。 我们评估了我们关于公开数据集的推荐方法, 包括CelebA、 Paris Streetview 和 DTDture 纹理数据集, 并显示我们的方法在质量和数量上都超越了当前最先进的绘图技术。