An important aspect of artificial intelligence (AI) is the ability to reason in a step-by-step "algorithmic" manner that can be inspected and verified for its correctness. This is especially important in the domain of question answering (QA). We argue that the challenge of algorithmic reasoning in QA can be effectively tackled with a "systems" approach to AI which features a hybrid use of symbolic and sub-symbolic methods including deep neural networks. Additionally, we argue that while neural network models with end-to-end training pipelines perform well in narrow applications such as image classification and language modelling, they cannot, on their own, successfully perform algorithmic reasoning, especially if the task spans multiple domains. We discuss a few notable exceptions and point out how they are still limited when the QA problem is widened to include other intelligence-requiring tasks. However, deep learning, and machine learning in general, do play important roles as components in the reasoning process. We propose an approach to algorithm reasoning for QA, Deep Algorithmic Question Answering (DAQA), based on three desirable properties: interpretability, generalizability and robustness which such an AI system should possess and conclude that they are best achieved with a combination of hybrid and compositional AI.


翻译:人工智能(AI)的一个重要方面是能够以逐步的“算法”方式思考,从而可以检查和核实其正确性。这在回答问题(QA)领域特别重要。我们争辩说,对人工智能而言,算法推理的挑战可以用一种“系统”方法来有效解决,该方法的特点是混合使用象征性和亚同义方法,包括深神经网络。此外,我们争辩说,虽然带有端到端训练管道的神经网络模型在图像分类和语言建模等狭义应用方面效果良好,但它们本身无法成功地进行算法推理,特别是在任务跨越多个领域的情况下。我们讨论少数显著的例外,并指出当QA问题扩大到包括其他需要情报的任务时,它们是如何仍然受到限制的。然而,深层次的学习和一般的机器学习在推理过程中起着重要作用。我们提出了一种对QA的算法推理法推理方法,深理解问题解问题解问题解问题(DAQQA),它们本身无法成功地进行算推理推理,特别是在任务涉及多个领域的情况下。我们讨论了一些显著的例外,并指出,并指出在QAA问题的范围扩大时,但在QAIAI的可解释性和最佳的组合上,这种系统应该达到最佳的组合。

0
下载
关闭预览

相关内容

自动问答(Question Answering, QA)是指利用计算机自动回答用户所提出的问题以满足用户知识需求的任务。不同于现有搜索引擎,问答系统是信息服务的一种高级形式,系统返回用户的不再是基于关键词匹配排序的文档列表,而是精准的自然语言答案。近年来,随着人工智能的飞速发展,自动问答已经成为倍受关注且发展前景广泛的研究方向。

知识荟萃

精品入门和进阶教程、论文和代码整理等

更多

查看相关VIP内容、论文、资讯等
专知会员服务
28+阅读 · 2021年8月2日
【Cell】神经算法推理,Neural algorithmic reasoning
专知会员服务
28+阅读 · 2021年7月16日
专知会员服务
123+阅读 · 2020年9月8日
【CIKM2020】神经逻辑推理,Neural Logic Reasoning
专知会员服务
49+阅读 · 2020年8月25日
【干货书】真实机器学习,264页pdf,Real-World Machine Learning
深度强化学习策略梯度教程,53页ppt
专知会员服务
178+阅读 · 2020年2月1日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
论文浅尝 | Question Answering over Freebase
开放知识图谱
18+阅读 · 2018年1月9日
【推荐】图像分类必读开创性论文汇总
机器学习研究会
14+阅读 · 2017年8月15日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Arxiv
12+阅读 · 2021年5月3日
Neural Module Networks for Reasoning over Text
Arxiv
9+阅读 · 2019年12月10日
Arxiv
6+阅读 · 2018年1月29日
Arxiv
9+阅读 · 2016年10月27日
VIP会员
相关VIP内容
专知会员服务
28+阅读 · 2021年8月2日
【Cell】神经算法推理,Neural algorithmic reasoning
专知会员服务
28+阅读 · 2021年7月16日
专知会员服务
123+阅读 · 2020年9月8日
【CIKM2020】神经逻辑推理,Neural Logic Reasoning
专知会员服务
49+阅读 · 2020年8月25日
【干货书】真实机器学习,264页pdf,Real-World Machine Learning
深度强化学习策略梯度教程,53页ppt
专知会员服务
178+阅读 · 2020年2月1日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
论文浅尝 | Question Answering over Freebase
开放知识图谱
18+阅读 · 2018年1月9日
【推荐】图像分类必读开创性论文汇总
机器学习研究会
14+阅读 · 2017年8月15日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Top
微信扫码咨询专知VIP会员