Personalized federated learning (FL) aims to train model(s) that can perform well for individual clients that are highly data and system heterogeneous. Most work in personalized FL, however, assumes using the same model architecture at all clients and increases the communication cost by sending/receiving models. This may not be feasible for realistic scenarios of FL. In practice, clients have highly heterogeneous system-capabilities and limited communication resources. In our work, we propose a personalized FL framework, PerFed-CKT, where clients can use heterogeneous model architectures and do not directly communicate their model parameters. PerFed-CKT uses clustered co-distillation, where clients use logits to transfer their knowledge to other clients that have similar data-distributions. We theoretically show the convergence and generalization properties of PerFed-CKT and empirically show that PerFed-CKT achieves high test accuracy with several orders of magnitude lower communication cost compared to the state-of-the-art personalized FL schemes.
翻译:个人化联合学习(FL)旨在培训能够对数据和系统差异很大的个别客户产生良好效果的模型(FL),但在个人化FL中,大多数工作都假设所有客户使用相同的模型结构,并通过发送/接收模型增加通信成本,这对FL现实情景可能不可行。在实践中,客户的系统能力和通信资源差异很大,通信资源有限。在我们的工作中,我们提议了一个个性化FL框架( PerFed-CKT),客户可以使用多种模型结构,而不能直接传达其模型参数。 PerFed-CKT使用组合式联合蒸馏法,客户使用日志将其知识转让给拥有类似数据分布的其他客户。我们从理论上展示 PerFed-CT的趋同性和一般特性,并用经验显示PerFed-CKT的测试精确度很高,其通信费用与最先进的个人化FL计划相比要低几级。