The convergence speed of machine learning models trained with Federated Learning is significantly affected by heterogeneous data partitions, even more so in a fully decentralized setting without a central server. In this paper, we show that the impact of label distribution skew, an important type of data heterogeneity, can be significantly reduced by carefully designing the underlying communication topology. We present D-Cliques, a novel topology that reduces gradient bias by grouping nodes in sparsely interconnected cliques such that the label distribution in a clique is representative of the global label distribution. We also show how to adapt the updates of decentralized SGD to obtain unbiased gradients and implement an effective momentum with D-Cliques. Our extensive empirical evaluation on MNIST and CIFAR10 demonstrates that our approach provides similar convergence speed as a fully-connected topology, which provides the best convergence in a data heterogeneous setting, with a significant reduction in the number of edges and messages. In a 1000-node topology, D-Cliques require 98% less edges and 96% less total messages, with further possible gains using a small-world topology across cliques.


翻译:与联邦学习联合会培训的机器学习模式的趋同速度受到多种数据分割的重大影响,在完全分散的环境下,没有中央服务器,更是这样。在本文中,我们表明,通过仔细设计基本的通信地形学,可以大大降低标签分布偏差(一种重要的数据异质类型)的影响。我们提出了D-Cliques,这是一种新型的地形学,它通过将节点组合成零星相联的晶片来减少梯度偏差,因此,在一个分区的标签分布代表了全球标签分布。我们还表明,如何调整分散的 SGD的更新,以获得无偏向梯度,并与D-Cliques形成有效的势头。我们对MNIST和CIFAR10的广泛经验评估表明,我们的方法提供了类似的趋同速度,作为一种完全相连的地形学,它提供了数据混合环境中的最佳趋同点,从而大大减少了边缘和信息的数量。在1000个诺德的表层学中,D-Cliqueques需要98%的边缘和96%的总信息,并可能利用小世界的层层层图进一步取得收益。

0
下载
关闭预览

相关内容

专知会员服务
14+阅读 · 2021年5月21日
Python分布式计算,171页pdf,Distributed Computing with Python
专知会员服务
107+阅读 · 2020年5月3日
【普林斯顿大学-微软】加权元学习,Weighted Meta-Learning
专知会员服务
39+阅读 · 2020年3月25日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
10+阅读 · 2021年3月30日
VIP会员
相关VIP内容
专知会员服务
14+阅读 · 2021年5月21日
Python分布式计算,171页pdf,Distributed Computing with Python
专知会员服务
107+阅读 · 2020年5月3日
【普林斯顿大学-微软】加权元学习,Weighted Meta-Learning
专知会员服务
39+阅读 · 2020年3月25日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
相关资讯
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员