Labelled transitions systems can be studied in terms of modal logic and in terms of bisimulation. These two notions are connected by Hennessy-Milner theorems, that show that two states are bisimilar precisely when they satisfy the same modal logic formulas. Recently, apartness has been studied as a dual to bisimulation, which also gives rise to a dual version of the Hennessy-Milner theorem: two states are apart precisely when there is a modal formula that distinguishes them. In this paper, we introduce ``directed'' versions of Hennessy-Milner theorems that characterize when the theory of one state is included in the other. For this we introduce ``positive modal logics'' that only allow a limited use of negation. Furthermore, we introduce directed notions of bisimulation and apartness, and then show that, for this positive modal logic, the theory of $s$ is included in the theory of $t$ precisely when $s$ is directed bisimilar to $t$. Or, in terms of apartness, we show that $s$ is directed apart from $t$ precisely when the theory of $s$ is not included in the theory of $t$. From the directed version of the Hennessy-Milner theorem, the original result follows. In particular, we study the case of branching bisimulation and Hennessy-Milner Logic with Until (HMLU) as a modal logic. We introduce ``directed branching bisimulation'' (and directed branching apartness) and ``Positive Hennessy-Milner Logic with Until'' (PHMLU) and we show the directed version of the Hennessy-Milner theorems. In the process, we show that every HMLU formula is equivalent to a Boolean combination of Positive HMLU formulas, which is a very non-trivial result. This gives rise to a sublogic of HMLU that is equally expressive but easier to reason about.
翻译:暂无翻译