In an effort to overcome limitations of reward-driven feature learning in deep reinforcement learning (RL) from images, we propose decoupling representation learning from policy learning. To this end, we introduce a new unsupervised learning (UL) task, called Augmented Temporal Contrast (ATC), which trains a convolutional encoder to associate pairs of observations separated by a short time difference, under image augmentations and using a contrastive loss. In online RL experiments, we show that training the encoder exclusively using ATC matches or outperforms end-to-end RL in most environments. Additionally, we benchmark several leading UL algorithms by pre-training encoders on expert demonstrations and using them, with weights frozen, in RL agents; we find that agents using ATC-trained encoders outperform all others. We also train multi-task encoders on data from multiple environments and show generalization to different downstream RL tasks. Finally, we ablate components of ATC, and introduce a new data augmentation to enable replay of (compressed) latent images from pre-trained encoders when RL requires augmentation. Our experiments span visually diverse RL benchmarks in DeepMind Control, DeepMind Lab, and Atari, and our complete code is available at https://github.com/astooke/rlpyt/tree/master/rlpyt/ul.
翻译:为了努力克服在深强化学习(RL)中以奖赏为驱动特征的学习与图像的局限性,我们提议从政策学习中脱钩。为此,我们引入了一个新的不受监督的学习任务,名为“增强时空对比”(ATC),用于培训一个革命编码器,以将短时间差异、图像增强和使用对比损失分开的观测组合联系起来。在在线RL实验中,我们显示,在大多数环境中,对编码器的培训完全使用 ATC 匹配或超越端至端的 RL 。此外,我们通过专家演示培训前的编码器,并使用这些编码器,在RL代理器中,我们发现使用经ATC培训的编码器,将多功能编码器连接到多环境的数据,并显示对下游RL任务的一般化。最后,我们对 ATC 的组件进行升级,并引入新的数据增强功能,以便能够在专家演示前/深层RBARB/DER上重新显示(压缩的)潜基图像,在前LARCB/DRBS上要求我们进行前和MRBD的升级基准。