Since network data commonly consists of observations from a single large network, researchers often partition the network into clusters in order to apply cluster-robust inference methods. Existing such methods require clusters to be asymptotically independent. Under mild conditions, we prove that, for this requirement to hold for network-dependent data, it is necessary and sufficient that clusters have low conductance, the ratio of edge boundary size to volume. This yields a simple measure of cluster quality. We find in simulations that when clusters have low conductance, cluster-robust methods control size better than HAC estimators. However, for important classes of networks lacking low-conductance clusters, the former can exhibit substantial size distortion. To determine the number of low-conductance clusters and construct them, we draw on results in spectral graph theory that connect conductance to the spectrum of the graph Laplacian. Based on these results, we propose to use the spectrum to determine the number of low-conductance clusters and spectral clustering to construct them.


翻译:由于网络数据通常由单一大型网络的观测组成,研究人员往往将网络分成组群,以便采用集束-紫外线推断方法;现有的这类方法要求各组群无差别地独立。在温和的条件下,我们证明,为了保持这种对依赖网络的数据的要求,必须而且足以使各组群具有低导力、边缘边界大小与体积之比的低导力、集束-紫外线方法控制大小比高频天体估计器高的模拟数据组群。然而,对于缺少低导力组群的重要网络类别而言,前者可显示出巨大的体积扭曲。为了确定低导力组群的数量并构建这些数据,我们利用光谱图理论的结果,将导力与拉普拉提亚图的频谱联系起来。根据这些结果,我们建议利用光谱来确定低导力组群和光谱组群的数量,以建造这些数据组群。

0
下载
关闭预览

相关内容

专知会员服务
42+阅读 · 2020年12月18日
专知会员服务
123+阅读 · 2020年9月8日
专知会员服务
39+阅读 · 2020年9月6日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
国家自然科学基金
0+阅读 · 2016年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
Arxiv
16+阅读 · 2022年11月1日
Knowledge Embedding Based Graph Convolutional Network
Arxiv
24+阅读 · 2021年4月23日
Arxiv
10+阅读 · 2021年2月18日
VIP会员
相关VIP内容
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
相关基金
国家自然科学基金
0+阅读 · 2016年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
Top
微信扫码咨询专知VIP会员