Let $S$ be the pool of $s$ parties and Alice be the dealer. In this paper, we propose a scheme that allows the dealer to encrypt messages in such a way that only one authorized coalition of parties (which the dealer chooses depending on the message) can decrypt. At the setup stage, each of the parties involved in the process receives an individual key from the dealer. To decrypt information, an authorized coalition of parties must work together to use their keys. Based on this scheme, we propose a threshold encryption scheme. For a given message $f$ the dealer can choose any threshold $m = m(f).$ More precisely, any set of parties of size at least $m$ can evaluate $f$; any set of size less than $m$ cannot do this. Similarly, the distribution of keys among the included parties can be done in such a way that authorized coalitions of parties will be given the opportunity to put a collective digital signature on any documents. This primitive can be generalized to the dynamic setting, where any user can dynamically join the pool $S$. In this case the new user receives a key from the dealer. Also any user can leave pool $S$. In both cases, already distributed keys of other users do not change. The main feature of the proposed schemes is that for a given $s$ the keys are distributed once and can be used multiple times. The proposed scheme based on the idea of hidden multipliers in encryption. As a platform, one can use both multiplicative groups of finite fields and groups of invertible elements of commutative rings, in particular, multiplicative groups of residue rings. We propose two versions of this scheme.
翻译:让美元成为交易方的集合, 爱丽丝是交易商。 在本文中, 我们提出一个方案, 让交易商能够以这样的方式加密信息, 只有经销商选择的政党联盟( 由经销商根据电文选择的) 才能解密。 在设置阶段, 参与这一过程的每个当事方都可以从经销商那里得到一个单独的密钥。 要解密信息, 一个经授权的党派联盟必须合作使用他们的密钥。 基于这个方案, 我们建议了一个门槛加密方案。 对于一个特定的信息, 交易商可以选择任何门槛 $m=m(f) 。 更准确地说, 任何规模至少为$m的政党联盟可以对美元进行加密。 任何规模的政党联盟都可以通过这样的方式分配钥匙。 授权的政党联盟必须有机会在任何文件中安装集体数字签名。 这种原始化可以推广到动态环境, 任何用户都可以动态地加入公库 $s$= m(f) 。 更确切地说, 任何新用户都可以从一个秘密的用户的集团中获取一个硬的硬盘, 。 。 也可以在交易的硬盘中, 以美元 。 。