Quantum homomorphic encryption, which allows computation by a server directly on encrypted data, is a fundamental primitive out of which more complex quantum cryptography protocols can be built. For such constructions to be possible, quantum homomorphic encryption must satisfy two privacy properties: data privacy which ensures that the input data is private from the server, and circuit privacy which ensures that the ciphertext after the computation does not reveal any additional information about the circuit used to perform it, beyond the output of the computation itself. While circuit privacy is well-studied in classical cryptography and many homomorphic encryption schemes can be equipped with it, its quantum analogue has received little attention. Here we establish a definition of circuit privacy for quantum homomorphic encryption with information-theoretic security. Furthermore, we reduce quantum oblivious transfer to quantum homomorphic encryption. By using this reduction, our work unravels fundamental trade-offs between circuit privacy, data privacy and correctness for a broad family of quantum homomorphic encryption protocols, including schemes that allow only the computation of Clifford circuits.


翻译:量子同态加密可以在保持数据加密的同时,允许服务器对数据进行计算。其已经成为更复杂的量子密码协议的基础。为了使这种构建成为可能,量子同态加密必须具备两个隐私保护措施:数据隐私,确保输入数据对服务器不可见;电路隐私,确保在计算后的密文中不包含关于电路的额外信息。虽然在经典密码学中已经对电路隐私进行了深入研究,并且很多同态加密方案都允许加入电路隐私,但其量子版本却受到了很少的关注。在本文中,我们提出了关于具有信息论安全性的量子同态加密的电路隐私定义。此外,我们将量子同态加密降低为量子无须转移。通过使用这种降维方法,我们揭示了关于广泛的量子同态加密协议家族(包括仅允许计算 Clifford 电路的方案)的电路隐私、数据隐私和正确性之间的基本权衡。

0
下载
关闭预览

相关内容

《区块链和量子计算》MITRE公司
专知会员服务
24+阅读 · 2023年1月4日
专知会员服务
91+阅读 · 2021年7月23日
专知会员服务
26+阅读 · 2021年5月9日
已删除
将门创投
14+阅读 · 2019年5月29日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2023年5月24日
VIP会员
相关资讯
已删除
将门创投
14+阅读 · 2019年5月29日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
相关基金
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员