Network Design problems typically ask for a minimum cost sub-network from a given host network. This classical point-of-view assumes a central authority enforcing the optimum solution. But how should networks be designed to cope with selfish agents that own parts of the network? In this setting, agents will deviate from a minimum cost network if this decreases their individual cost. Hence, designed networks should be both efficient in terms of total cost and stable in terms of the agents' willingness to accept the network. We study this novel type of Network Design problem by investigating the creation of $(\beta,\gamma)$-networks, that are in $\beta$-approximate Nash equilibrium and have a total cost of at most $\gamma$ times the optimal cost, for the recently proposed Euclidean Generalized Network Creation Game by Bil\`o et al. [SPAA 2019]. There, $n$ agents corresponding to points in Euclidean space create costly edges among themselves to optimize their centrality in the created network. Our main result is a simple $\mathcal{O}(n^2)$-time algorithm that computes a $(\beta,\beta)$-network with low $\beta$ for any given set of points. Moreover, on integer grid point sets or random point sets our algorithm achieves a low constant $\beta$. Besides these results, we discuss a generalization of our algorithm to instances with arbitrary, even non-metric, edge lengths. Moreover, we show that no such positive results are possible when focusing on either optimal networks or perfectly stable networks as in both cases NP-hard problems arise, there exist instances with very unstable optimal networks, and there are instances for perfectly stable networks with high total cost. Along the way, we significantly improve several results from Bil\`o et al. and we asymptotically resolve their conjecture about the Price of Anarchy by providing a tight bound.


翻译:网络设计问题通常要求某个主机网络提供最低成本子网络。 这个古典观点假设一个中央权威机构执行最佳解决方案。 但是网络应该如何设计来应对拥有网络部分的自私的代理商? 在这种环境下, 代理商如果这样降低个人成本, 就会偏离一个最低成本网络。 因此, 设计网络在总成本方面应该是有效的, 在代理商接受网络的意愿方面应该是稳定的。 我们通过调查创建 $ (\ beta,\ gamma) 美元网络的创建来研究这个新型的网络设计问题。 我们的主要结果是, 以美元为单位, 以美元为单位, 以美元为单位, 以美元为单位, 以美元为单位, 以美元为单位, 以美元为单位, 以美元为单位, 以美元为单位, 以美元为单位, 以美元为单位, 以美元为单位, 以美元为单位, 以美元为单位, 以美元为单位, 以美元, 以美元为单位, 以美元为单位, 以美元为单位, 以美元为单位, 以美元为单位, 以美元为单位, 以美元为单位, 以美元为单位, 以美元为单位, 以美元为单位, 以美元为单位, 以美元为单位, 以美元为单位, 以美元为单位, 以美元 以美元 以美元 以美元为单位, 以美元为单位,以美元为单位, 以美元,以美元, 以美元 以美元 以美元 以美元 以美元 以美元 以美元 以美元 以美元计算,以美元 以美元 以美元

0
下载
关闭预览

相关内容

Networking:IFIP International Conferences on Networking。 Explanation:国际网络会议。 Publisher:IFIP。 SIT: http://dblp.uni-trier.de/db/conf/networking/index.html
专知会员服务
50+阅读 · 2020年12月14日
专知会员服务
84+阅读 · 2020年12月5日
机器学习速查手册,135页pdf
专知会员服务
340+阅读 · 2020年3月15日
【ICLR-2020】网络反卷积,NETWORK DECONVOLUTION
专知会员服务
38+阅读 · 2020年2月21日
【新书】Python编程基础,669页pdf
专知会员服务
194+阅读 · 2019年10月10日
内涵网络嵌入:Content-rich Network Embedding
我爱读PAMI
4+阅读 · 2019年11月5日
计算机 | 中低难度国际会议信息8条
Call4Papers
9+阅读 · 2019年6月19日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
已删除
将门创投
5+阅读 · 2017年11月20日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年6月14日
Arxiv
0+阅读 · 2021年6月12日
Arxiv
0+阅读 · 2021年6月11日
VIP会员
相关VIP内容
专知会员服务
50+阅读 · 2020年12月14日
专知会员服务
84+阅读 · 2020年12月5日
机器学习速查手册,135页pdf
专知会员服务
340+阅读 · 2020年3月15日
【ICLR-2020】网络反卷积,NETWORK DECONVOLUTION
专知会员服务
38+阅读 · 2020年2月21日
【新书】Python编程基础,669页pdf
专知会员服务
194+阅读 · 2019年10月10日
相关资讯
内涵网络嵌入:Content-rich Network Embedding
我爱读PAMI
4+阅读 · 2019年11月5日
计算机 | 中低难度国际会议信息8条
Call4Papers
9+阅读 · 2019年6月19日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
已删除
将门创投
5+阅读 · 2017年11月20日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员