Sometimes, it is possible to represent a complicated polytope as a projection of a much simpler polytope. To quantify this phenomenon, the extension complexity of a polytope $P$ is defined to be the minimum number of facets in a (possibly higher-dimensional) polytope from which $P$ can be obtained as a (linear) projection. This notion has been studied for several decades, motivated by its relevance for combinatorial optimisation problems. It is an important question to understand the extent to which the extension complexity of a polytope is controlled by its dimension, and in this paper we prove three different results along these lines. First, we prove that for a fixed dimension $d$, the extension complexity of a random $d$-dimensional polytope (obtained as the convex hull of random points in a ball or on a sphere) is typically on the order of the square root of its number of vertices. Second, we prove that any cyclic $n$-vertex polygon (whose vertices lie on a circle) has extension complexity at most $24\sqrt n$. This bound is tight up to the constant factor $24$. Finally, we show that there exists an $n^{o(1)}$-dimensional polytope with at most $n$ facets and extension complexity $n^{1-o(1)}$.


翻译:有时,可以将一个复杂的多元体作为简单得多的多元体的预测。为了量化这一现象,将一个聚苯乙烯$P$的扩展复杂性定义为一个(可能是高维的)多元体中最小的多面体数量,从中可以获得美元(线性)的预测。这个概念已经研究了几十年,其动机是它对于组合式优化问题的关联性。第二个重要问题是,了解一个多边体的扩展复杂性在多大程度上受到其维度的控制,在本文中,我们证明这三条线有三种不同的结果。首先,我们证明对于一个固定的维度来说,美元(可能是高维的)多维体的扩展复杂性是美元(可能是高维的)多维体中最小的。一个随机的美元多维体(作为球或球上随机点的组合体的组合体)的扩展复杂性一般是其脊椎数的正方根。第二,我们证明,任何环形的美元(其脊椎位于圆上)的扩展程度是最大的复杂度。我们证明一个24\ 美元 美元 美元 和 美元 美元 的多元度是固定的基 。

0
下载
关闭预览

相关内容

iOS 8 提供的应用间和应用跟系统的功能交互特性。
  • Today (iOS and OS X): widgets for the Today view of Notification Center
  • Share (iOS and OS X): post content to web services or share content with others
  • Actions (iOS and OS X): app extensions to view or manipulate inside another app
  • Photo Editing (iOS): edit a photo or video in Apple's Photos app with extensions from a third-party apps
  • Finder Sync (OS X): remote file storage in the Finder with support for Finder content annotation
  • Storage Provider (iOS): an interface between files inside an app and other apps on a user's device
  • Custom Keyboard (iOS): system-wide alternative keyboards

Source: iOS 8 Extensions: Apple’s Plan for a Powerful App Ecosystem
最新《图理论》笔记书,98页pdf
专知会员服务
74+阅读 · 2020年12月27日
专知会员服务
84+阅读 · 2020年12月5日
元学习与图神经网络逻辑推导,55页ppt
专知会员服务
128+阅读 · 2020年4月25日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【新书】Python编程基础,669页pdf
专知会员服务
194+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
学术报告|UCLA副教授孙怡舟博士
科技创新与创业
9+阅读 · 2019年6月18日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
已删除
将门创投
3+阅读 · 2018年3月13日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Arxiv
0+阅读 · 2021年8月12日
VIP会员
相关VIP内容
最新《图理论》笔记书,98页pdf
专知会员服务
74+阅读 · 2020年12月27日
专知会员服务
84+阅读 · 2020年12月5日
元学习与图神经网络逻辑推导,55页ppt
专知会员服务
128+阅读 · 2020年4月25日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【新书】Python编程基础,669页pdf
专知会员服务
194+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关资讯
学术报告|UCLA副教授孙怡舟博士
科技创新与创业
9+阅读 · 2019年6月18日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
已删除
将门创投
3+阅读 · 2018年3月13日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Top
微信扫码咨询专知VIP会员