Network Traffic Classification (NTC) has become an important component in a wide variety of network management operations, e.g., Quality of Service (QoS) provisioning and security purposes. Machine Learning (ML) algorithms as a common approach for NTC methods can achieve reasonable accuracy and handle encrypted traffic. However, ML-based NTC techniques suffer from the shortage of labeled traffic data which is the case in many real-world applications. This study investigates the applicability of an active form of ML, called Active Learning (AL), which reduces the need for a high number of labeled examples by actively choosing the instances that should be labeled. The study first provides an overview of NTC and its fundamental challenges along with surveying the literature in the field of using ML techniques in NTC. Then, it introduces the concepts of AL, discusses it in the context of NTC, and review the literature in this field. Further, challenges and open issues in the use of AL for NTC are discussed. Additionally, as a technical survey, some experiments are conducted to show the broad applicability of AL in NTC. The simulation results show that AL can achieve high accuracy with a small amount of data.


翻译:网络交通分类(NTC)已成为各种网络管理业务的重要组成部分,例如,服务质量(QOS)提供和安全目的; 机器学习(ML)算法作为NTC方法的共同方法,可以达到合理的准确性并处理加密交通; 然而,基于ML的NTC技术由于许多现实应用软件的标签交通数据短缺而受到影响; 这项研究调查了一种称为积极学习(AL)的积极形式的ML的适用性,通过积极选择应标出的例子,减少了对大量有标签的例子的需要; 这项研究首先概述了NTC及其基本挑战,同时调查了NTC使用ML技术领域的文献; 然后,它介绍了AL的概念,在NTC中加以讨论,并审查了该领域的文献; 此外,还讨论了使用AL用于NTC的挑战和公开问题。 此外,在一项技术调查中,进行了一些试验,以显示AL在NTC中的广泛适用性。 模拟结果显示,AL可以用少量数据达到很高的准确性。

0
下载
关闭预览

相关内容

主动学习是机器学习(更普遍的说是人工智能)的一个子领域,在统计学领域也叫查询学习、最优实验设计。“学习模块”和“选择策略”是主动学习算法的2个基本且重要的模块。 主动学习是“一种学习方法,在这种方法中,学生会主动或体验性地参与学习过程,并且根据学生的参与程度,有不同程度的主动学习。” (Bonwell&Eison 1991)Bonwell&Eison(1991) 指出:“学生除了被动地听课以外,还从事其他活动。” 在高等教育研究协会(ASHE)的一份报告中,作者讨论了各种促进主动学习的方法。他们引用了一些文献,这些文献表明学生不仅要做听,还必须做更多的事情才能学习。他们必须阅读,写作,讨论并参与解决问题。此过程涉及三个学习领域,即知识,技能和态度(KSA)。这种学习行为分类法可以被认为是“学习过程的目标”。特别是,学生必须从事诸如分析,综合和评估之类的高级思维任务。
零样本文本分类,Zero-Shot Learning for Text Classification
专知会员服务
95+阅读 · 2020年5月31日
【干货书】真实机器学习,264页pdf,Real-World Machine Learning
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【推荐】RNN最新研究进展综述
机器学习研究会
25+阅读 · 2018年1月6日
【推荐】ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
机器学习研究会
20+阅读 · 2017年12月17日
【推荐】卷积神经网络类间不平衡问题系统研究
机器学习研究会
6+阅读 · 2017年10月18日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
【推荐】GAN架构入门综述(资源汇总)
机器学习研究会
10+阅读 · 2017年9月3日
【推荐】全卷积语义分割综述
机器学习研究会
19+阅读 · 2017年8月31日
【推荐】图像分类必读开创性论文汇总
机器学习研究会
14+阅读 · 2017年8月15日
Arxiv
35+阅读 · 2021年1月27日
Arxiv
16+阅读 · 2020年5月20日
A Survey of Deep Learning for Scientific Discovery
Arxiv
29+阅读 · 2020年3月26日
Image Segmentation Using Deep Learning: A Survey
Arxiv
44+阅读 · 2020年1月15日
Arxiv
45+阅读 · 2019年12月20日
Arxiv
5+阅读 · 2018年10月11日
Arxiv
11+阅读 · 2018年7月31日
Arxiv
25+阅读 · 2018年1月24日
Arxiv
5+阅读 · 2017年7月25日
VIP会员
相关资讯
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【推荐】RNN最新研究进展综述
机器学习研究会
25+阅读 · 2018年1月6日
【推荐】ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
机器学习研究会
20+阅读 · 2017年12月17日
【推荐】卷积神经网络类间不平衡问题系统研究
机器学习研究会
6+阅读 · 2017年10月18日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
【推荐】GAN架构入门综述(资源汇总)
机器学习研究会
10+阅读 · 2017年9月3日
【推荐】全卷积语义分割综述
机器学习研究会
19+阅读 · 2017年8月31日
【推荐】图像分类必读开创性论文汇总
机器学习研究会
14+阅读 · 2017年8月15日
相关论文
Arxiv
35+阅读 · 2021年1月27日
Arxiv
16+阅读 · 2020年5月20日
A Survey of Deep Learning for Scientific Discovery
Arxiv
29+阅读 · 2020年3月26日
Image Segmentation Using Deep Learning: A Survey
Arxiv
44+阅读 · 2020年1月15日
Arxiv
45+阅读 · 2019年12月20日
Arxiv
5+阅读 · 2018年10月11日
Arxiv
11+阅读 · 2018年7月31日
Arxiv
25+阅读 · 2018年1月24日
Arxiv
5+阅读 · 2017年7月25日
Top
微信扫码咨询专知VIP会员