Map matching is a common preprocessing step for analysing vehicle trajectories. In the theory community, the most popular approach for map matching is to compute a path on the road network that is the most spatially similar to the trajectory, where spatial similarity is measured using the Fr\'echet distance. A shortcoming of existing map matching algorithms under the Fr\'echet distance is that every time a trajectory is matched, the entire road network needs to be reprocessed from scratch. An open problem is whether one can preprocess the road network into a data structure, so that map matching queries can be answered in sublinear time. In this paper, we investigate map matching queries under the Fr\'echet distance. We provide a negative result for geometric planar graphs. We show that, unless SETH fails, there is no data structure that can be constructed in polynomial time that answers map matching queries in $O((pq)^{1-\delta})$ query time for any $\delta > 0$, where $p$ and $q$ are the complexities of the geometric planar graph and the query trajectory, respectively. We provide a positive result for realistic input graphs, which we regard as the main result of this paper. We show that for $c$-packed graphs, one can construct a data structure of $\tilde O(cp)$ size that can answer $(1+\varepsilon)$-approximate map matching queries in $\tilde O(c^4 q \log^4 p)$ time, where $\tilde O(\cdot)$ hides lower-order factors and dependence of $\varepsilon$.
翻译:地图匹配是分析车辆轨迹的一个常见的预处理步骤。 在理论界, 最流行的地图匹配方法是计算道路网络上与轨迹空间最相似的路径。 使用 Fr\' echet 距离测量空间相似性。 Fr\' echet 距离下的现有地图匹配算法的一个缺点是, 每次轨迹匹配, 整个公路网络都需要从零开始重新处理。 一个公开的问题是, 是否可以将公路网络预处理成数据结构, 这样匹配查询的地图可以在亚线时间里解答。 在本文中, 我们根据 Fr\' echet 距离来调查地图匹配查询。 我们为几何平面平面平面平面平面平面图中, 除非 SET 失败, 任何数据结构无法在解析时解答 $( pq) 1\\\\ delta} ( 美元) 任何$delta > 的查询时间, 也就是说, $ 美元和 $ $ 美元 美元调调 。