In this work, we study the Induced Matching problem: Given an undirected graph $G$ and an integer $\ell$, is there an induced matching $M$ of size at least $\ell$? An edge subset $M$ is an induced matching in $G$ if $M$ is a matching such that there is no edge between two distinct edges of $M$. Our work looks into the parameterized complexity of Induced Matching with respect to "below guarantee" parameterizations. We consider the parameterization $u - \ell$ for an upper bound $u$ on the size of any induced matching. For instance, any induced matching is of size at most $n / 2$ where $n$ is the number of vertices, which gives us a parameter $n / 2 - \ell$. In fact, there is a straightforward $9^{n/2 - \ell} \cdot n^{O(1)}$-time algorithm for Induced Matching [Moser and Thilikos, J. Discrete Algorithms]. Motivated by this, we ask: Is Induced Matching FPT for a parameter smaller than $n / 2 - \ell$? In search for such parameters, we consider $MM(G) - \ell$ and $IS(G) - \ell$, where $MM(G)$ is the maximum matching size and $IS(G)$ is the maximum independent set size of $G$. We find that Induced Matching is presumably not FPT when parameterized by $MM(G) - \ell$ or $IS(G) - \ell$. In contrast to these intractability results, we find that taking the average of the two helps -- our main result is a branching algorithm that solves Induced Matching in $49^{(MM(G) + IS(G))/ 2 - \ell} \cdot n^{O(1)}$ time. Our algorithm makes use of the Gallai-Edmonds decomposition to find a structure to branch on.
翻译:在这项工作中, 我们研究“ 降价匹配” 问题 : 在未引导的图形 $G$ 和整价 $ 的情况下, 是否导出匹配大小至少$\ ell$ 美元? 边缘子子 $M$ 是一个以美元为单位的匹配 $G$ 。 如果 $M$是匹配, 那么在两个截然不同的边缘之间没有偏差 $M$ 。 我们的工作在“ 低保证” 参数化的参数化复杂度中看 。 我们考虑到一个参数化的参数化成 $ - 美元, 在任何导出匹配的大小中, 美元为美元; 任何导出匹配的大小为$/ 2 美元 美元 美元, 美元为美元 。 最大 GG, 这给我们的参数值为$2 。 事实上, 一个直接的 $NMMQ/2 -\\ = 美元 美元 。 当我们被引入时, 我们的调价 和 美元 美元 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 。