A universal kernel is constructed whose sections approximate any causal and time-invariant filter in the fading memory category with inputs and outputs in a finite-dimensional Euclidean space. This kernel is built using the reservoir functional associated with a state-space representation of the Volterra series expansion available for any analytic fading memory filter. It is hence called the Volterra reservoir kernel. Even though the state-space representation and the corresponding reservoir feature map are defined on an infinite-dimensional tensor algebra space, the kernel map is characterized by explicit recursions that are readily computable for specific data sets when employed in estimation problems using the representer theorem. We showcase the performance of the Volterra reservoir kernel in a popular data science application in relation to bitcoin price prediction.
翻译:构建了一个通用的内核,其各部分在消退的内存类别中与输入和输出相近于任何因果和时间变化过滤器的内核,其输入和输出在一定维度的欧几里德空间中。该内核是使用储油层功能建造的,该储油层的功能与用于任何分析性消退的内存过滤器的Volterra系列扩展的状态空间有关。因此,它被称为Volterra水库内核。尽管国家空间代表器和相应的储油层地貌图是在一个无限的维度的Exmoor代数空间上定义的,但内核图的特征是,在使用代表物理论来估算问题时,可以很容易地对具体数据集进行计算。我们展示了Volterra水库内核在与比特币价格预测有关的流行数据科学应用中的性能。我们展示了Volterra水层内核的性能。