Generative design problems often encompass complex action spaces that may be divergent over time, contain state-dependent constraints, or involve hybrid (discrete and continuous) domains. To address those challenges, this work introduces Design Strategy Network (DSN), a data-driven deep hierarchical framework that can learn strategies over these arbitrary complex action spaces. The hierarchical architecture decomposes every action decision into first predicting a preferred spatial region in the design space and then outputting a probability distribution over a set of possible actions from that region. This framework comprises a convolutional encoder to work with image-based design state representations, a multi-layer perceptron to predict a spatial region, and a weight-sharing network to generate a probability distribution over unordered set-based inputs of feasible actions. Applied to a truss design study, the framework learns to predict the actions of human designers in the study, capturing their truss generation strategies in the process. Results show that DSNs significantly outperform non-hierarchical methods of policy representation, demonstrating their superiority in complex action space problems.
翻译:生成的设计问题往往包括复杂的行动空间,这些空间可能随时间而不同,含有国家制约,或涉及混合(分辨和连续)领域。为了应对这些挑战,这项工作引入了设计战略网络(DSN),这是一个数据驱动的深层次层次框架,可以学习关于这些任意复杂行动空间的战略。等级结构将每一项行动决定分解为首先预测设计空间中偏好的空间区域,然后输出该区域一系列可能行动的概率分布。这一框架包括一个与基于图像的设计状态代表工作相融合的聚合编码器,一个预测空间区域的多层接收器,以及一个权重共享网络,以产生概率分布,超过未按顺序设定的可行行动投入。在Trus设计研究中应用,该框架学会预测研究中的人类设计者的行动,在这一过程中捕捉到其矩形生成战略。结果显示,DSNSN明显超越了基于图像的设计状态代表的非等级方法,表明其在复杂的行动空间问题中的优势。