Derived datasets can be defined implicitly or explicitly. An implicit definition (of dataset O in terms of datasets I) is a logical specification involving the source data I and the interface data O. It is a valid definition of O in terms of I, if any two models of the specification agreeing on I agree on O. In contrast, an explicit definition is a query that produces O from I. Variants of Beth's theorem state that one can convert implicit definitions to explicit ones. Further, this conversion can be done effectively given a proof witnessing implicit definability in a suitable proof system. We prove the analogous implicit-to-explicit result for nested relations: implicit definitions, given in the natural logic for nested relations, can be converted to explicit definitions in the nested relational calculus (NRC) We first provide a model-theoretic argument for this result, which makes some additional connections that may be of independent interest. between NRC queries, interpretations, a standard mechanisms for defining structure-to-structure translation in logic, and between interpretations and implicit to definability ``up to unique isomorphism''. The latter connection makes use of a variation of a result of Gaifman. We also provide a proof-theoretic result that provides an effective argument: from a proof witnessing implicit definability, we can efficiently produce an NRC definition. This will involve introducing the appropriate proof system for reasoning with nested sets, along with some auxiliary Beth-type results for this system. As a consequence, we can effectively extract rewritings of NRC queries in terms of NRC views, given a proof witnessing that the query is determined by the views.
翻译:隐含的定义( 数据集 O ) 是包含源数据 I 和界面数据 O 的逻辑性定义。 如果两个模式的规格都同意 O 。 相比之下, 一个明确的定义是产生 O 的查询。 Beth 的方略表示, 可以将隐含的定义转换为明确的定义。 此外, 如果证明在适当的验证系统中存在隐含的可定义性, 这种转换可以有效进行。 我们证明嵌套关系具有类似的隐含至解释性结果: 嵌套关系自然逻辑给出的隐含至解释性定义, 可以转换为隐含关系 I 的 O 的有效定义。 我们首先为这一结果提供一种模型- 理论性论证, 使一些可能具有独立兴趣的其他关联。 NRC 的查询、 解释、 界定结构对逻辑结构解释的标准机制, 以及解释和隐含的可定义性( 缩嵌入至独特) 的隐含性定义: 嵌套关系自然逻辑给出的隐含性定义, 可以转换结果。