The transition to a fully renewable energy grid requires better forecasting of demand at the low-voltage level to increase efficiency and ensure reliable control. However, high fluctuations and increasing electrification cause huge forecast variability, not reflected in traditional point estimates. Probabilistic load forecasts take future uncertainties into account and thus allow more informed decision-making for the planning and operation of low-carbon energy systems. We propose an approach for flexible conditional density forecasting of short-term load based on Bernstein polynomial normalizing flows, where a neural network controls the parameters of the flow. In an empirical study with 363 smart meter customers, our density predictions compare favorably against Gaussian and Gaussian mixture densities. Also, they outperform a non-parametric approach based on the pinball loss for 24h-ahead load forecasting for two different neural network architectures.
翻译:向完全可再生能源网的过渡要求以低压水平更好地预测需求,以提高效率和确保可靠的控制。然而,高波动和电气化的增加造成了巨大的预测变异性,传统点估计没有反映出这一点。概率性负载预测考虑到未来的不确定性,从而能够对低碳能源系统的规划和运行作出更知情的决策。我们提出了一个基于伯恩斯坦-多元正常化流的短期负载灵活的有条件密度预测方法,在这种流量参数由神经网络控制的情况下。在一项由363个智能计量客户进行的经验性研究中,我们的密度预测与高山和高山混合密度相比是相当的。此外,根据对两个不同的神经网络结构的24小时负载预测,这些预测也超过了一种非参数性的方法。