Cochran's Q statistic is routinely used for testing heterogeneity in meta-analysis. Its expected value (under an incorrect null distribution) is part of several popular estimators of the between-study variance, $\tau^2$. Those applications generally do not account for estimation of the variances in the inverse-variance weights. Importantly, those weights make approximating the distribution of $Q$ (more explicitly, $Q_{IV}$) rather complicated. As an alternative, we are investigating a $Q$ statistic, $Q_F$, whose constant weights use only the studies' effective sample sizes. For log-odds-ratio, log-relative-risk, and risk difference as the measure of effect, we study, by simulation, approximations to distributions of $Q_{IV}$ and $Q_F$, as the basis for tests of heterogeneity. Results of our simulations are provided and in 114 A4 Figures, 133 pages in total.
翻译:Cochran的统计通常用于测试元分析中的异质性,其预期值(在不正确的无效分布下)是研究间差异的若干流行估计者的一部分,即$\tau ⁇ 2美元,这些应用通常不考虑对逆差加权数差异的估计。重要的是,这些加权数使Q美元(更明确地说,$IV美元)的分布相当复杂。作为替代办法,我们正在调查一个Q美元的统计数据,即$F$,其常数重量仅使用研究的有效样本大小。对于测算结果的测算-鼠标、日志-逆差风险和风险差异,我们通过模拟、对美元-IV美元和美元分布的近似值来研究,以此作为检验异质性的基础。我们提供了我们的模拟结果,在114 A4图中总共提供了133页。