Accurately estimating uncertainty is a crucial component of decision-making and forecasting in machine learning. However, existing uncertainty estimation methods developed for IID data may fail when these IID assumptions no longer hold. In this paper, we present a novel approach to uncertainty estimation that leverages the principles of online learning. Specifically, we define a task called online calibrated forecasting which seeks to extend existing online learning methods to handle predictive uncertainty while ensuring high accuracy. We introduce algorithms for this task that provide formal guarantees on the accuracy and calibration of probabilistic predictions even on adversarial input. We demonstrate the practical utility of our methods on several forecasting tasks, showing that our probabilistic predictions improve over natural baselines. Overall, our approach advances calibrated uncertainty estimation, and takes a step towards more robust and reliable decision-making and forecasting in risk-sensitive scenarios.
翻译:准确估计不确定性是机器学习中决策和预测的一个关键组成部分。然而,为IDD数据开发的现有不确定性估计方法,如果这些IDD假设不再有效,则可能失败。在本文件中,我们提出了一种利用在线学习原则的新的不确定性估计方法。具体地说,我们界定了一项名为在线校准预测的任务,其目的是扩大现有的在线学习方法,处理预测不确定性,同时确保高准确性。我们为此任务引入了算法,为即使在对抗性投入上也能够准确和校准概率预测提供了正式保证。我们展示了我们方法在几项预测任务上的实际效用,表明我们的概率预测比自然基线有所改进。总的来说,我们的方法推进了经过校准的不确定性估计,并朝着更可靠和可靠的决策和风险敏感情景预测迈出了一步。