Video Action Recognition (VAR) is a challenging task due to its inherent complexities. Though different approaches have been explored in the literature, designing a unified framework to recognize a large number of human actions is still a challenging problem. Recently, Multi-Modal Learning (MML) has demonstrated promising results in this domain. In literature, 2D skeleton or pose modality has often been used for this task, either independently or in conjunction with the visual information (RGB modality) present in videos. However, the combination of pose, visual information, and text attributes has not been explored yet, though text and pose attributes independently have been proven to be effective in numerous computer vision tasks. In this paper, we present the first pose augmented Vision-language model (VLM) for VAR. Notably, our scheme achieves an accuracy of 92.81% and 73.02% on two popular human video action recognition benchmark datasets, UCF-101 and HMDB-51, respectively, even without any video data pre-training, and an accuracy of 96.11% and 75.75% after kinetics pre-training.
翻译:暂无翻译