In the {claw, diamond}-free edge deletion problem, we are given a graph $G$ and an integer $k>0$, the question is whether there are at most $k$ edges whose deletion results in a graph without claws and diamonds as induced graphs. Based on some refined observations, we propose a kernel of $O(k^3)$ vertices and $O(k^4)$ edges, significantly improving the previous kernel of $O(k^{12})$ vertices and $O(k^{24})$ edges. In addition, we derive an $O^*(3.792^k)$-time algorithm for the {claw, diamond}-free edge deletion problem.
翻译:在{法律,钻石}无边端删除问题中,我们得到了一张G$和整数美元>0美元的图表,问题是,在没有爪子的图表中,是否最多有K$边缘的删除结果。根据一些经过改进的观察,我们提出了一个以O(k)3美元为顶点和以O(k)4美元为底点的内核,大大改善了以前的O(k)12美元为顶点和以O(k)24美元为底点的边端。此外,我们还为{claw,钻石}免边端删除问题提出了一个美元(3.792)-时间算法。