This paper presents first successful steps in designing search agents that learn meta-strategies for iterative query refinement in information-seeking tasks. Our approach uses machine reading to guide the selection of refinement terms from aggregated search results. Agents are then empowered with simple but effective search operators to exert fine-grained and transparent control over queries and search results. We develop a novel way of generating synthetic search sessions, which leverages the power of transformer-based language models through (self-)supervised learning. We also present a reinforcement learning agent with dynamically constrained actions that learns interactive search strategies from scratch. Our search agents obtain retrieval and answer quality performance comparable to recent neural methods, using only a traditional term-based BM25 ranking function and interpretable discrete reranking and filtering actions.
翻译:本文介绍了在设计搜索工具以学习元战略以在信息搜索任务中进行迭接查询完善方面采取的初步成功步骤。我们的方法是使用机器阅读来指导从汇总搜索结果中选择精细术语。然后,代理人拥有简单而有效的搜索操作器,能够对查询和搜索结果进行精细的、透明的控制。我们开发了一种生成合成搜索会的新方式,通过(自我)监督的学习来利用基于变压器的语言模型的力量。我们还展示了一个强化学习工具,其动态限制的行动能够从零开始学习交互式搜索战略。我们的搜索工具获得检索和回答质量性能,与最近的神经方法相当,仅使用传统的基于术语的BM25排名功能和可解释的离散分级和过滤行动。