Person search is a challenging task which aims to achieve joint pedestrian detection and person re-identification (ReID). Previous works have made significant advances under fully and weakly supervised settings. However, existing methods ignore the generalization ability of the person search models. In this paper, we take a further step and present Domain Adaptive Person Search (DAPS), which aims to generalize the model from a labeled source domain to the unlabeled target domain. Two major challenges arises under this new setting: one is how to simultaneously solve the domain misalignment issue for both detection and Re-ID tasks, and the other is how to train the ReID subtask without reliable detection results on the target domain. To address these challenges, we propose a strong baseline framework with two dedicated designs. 1) We design a domain alignment module including image-level and task-sensitive instance-level alignments, to minimize the domain discrepancy. 2) We take full advantage of the unlabeled data with a dynamic clustering strategy, and employ pseudo bounding boxes to support ReID and detection training on the target domain. With the above designs, our framework achieves 34.7% in mAP and 80.6% in top-1 on PRW dataset, surpassing the direct transferring baseline by a large margin. Surprisingly, the performance of our unsupervised DAPS model even surpasses some of the fully and weakly supervised methods. The code is available at https://github.com/caposerenity/DAPS.


翻译:人搜索是一项具有挑战性的任务,目的是实现联合行人探测和重新身份识别(ReID) 。 以往的工程在完全和薄弱的监管环境下都取得了显著进步。 但是, 现有方法忽略了个人搜索模型的普及能力。 在本文件中, 我们进一步迈出一步, 并推出“ 域适应人搜索 ” (DAPS), 目的是将模型从标签源域推广到未标签目标域。 在这个新环境下, 出现了两大挑战 : 一个是如何同时解决域错配问题, 用于探测和重新识别任务。 另一个是如何在没有可靠检测结果的情况下对重新开发子任务进行培训。 为了应对这些挑战, 我们提议了一个强有力的基准框架, 有两种专用设计 。 1 我们设计了一个域调整模块, 包括图像级别和任务敏感的试级校对, 以尽量减少域差异。 2 我们充分利用未标签数据, 以动态的组合战略, 使用伪绑框支持目标域的ReID和检测培训。 有了上述设计, 我们的框架在 mAP 和80.6 顶级标准中实现了34.7%的模型, 将DARPS 的高级标准 完全转换为SBS 。

0
下载
关闭预览

相关内容

[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
国家自然科学基金
0+阅读 · 2013年12月31日
Arxiv
13+阅读 · 2021年3月29日
VIP会员
相关VIP内容
相关资讯
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
Top
微信扫码咨询专知VIP会员