We extend the applicability of the popular interior-penalty discontinuous Galerkin (dG) method discretizing advection-diffusion-reaction problems to meshes comprising extremely general, essentially arbitrarily-shaped element shapes. In particular, our analysis allows for \emph{curved} element shapes, without the use of non-linear elemental maps. The feasibility of the method relies on the definition of a suitable choice of the discontinuity penalization, which turns out to be explicitly dependent on the particular element shape, but essentially independent on small shape variations. This is achieved upon proving extensions of classical trace and Markov-type inverse estimates to arbitrary element shapes. A further new $H^1-L_2$-type inverse estimate on essentially arbitrary element shapes enables the proof of inf-sup stability of the method in a streamline-diffusion-like norm. These inverse estimates may be of independent interest. A priori error bounds for the resulting method are given under very mild structural assumptions restricting the magnitude of the local curvature of element boundaries. Numerical experiments are also presented, indicating the practicality of the proposed approach.
翻译:使用非线性元素图,我们将流行的内侧-内侧不相干 Galerkin (dG) 方法的可适用性扩大到由极为笼统的、本质上是任意形状的元素形状构成的宫颈,特别是,我们的分析允许使用不使用非线性元素图的元素形状。该方法的可行性取决于对不连续处罚的适当选择的定义,该定义显然取决于特定元素形状,但基本上独立于小形状变异。这是在证明古典痕迹和马可夫型反向估计扩展至任意元素形状时实现的。另外对本质上是任意的元素形状的新的$H1-L_2美元反向估计使得能够证明该方法在类似精密注入的规范中具有内在稳定性。这些反向估计可能具有独立的兴趣。由此得出的方法的先前错误是在非常温和的结构假设下作出的,这些假设限制了元素边界的本地曲线大小。还提出了新的数值实验,说明拟议的方法的实用性。