We extend the applicability of the popular interior-penalty discontinuous Galerkin (dG) method discretizing advection-diffusion-reaction problems to meshes comprising extremely general, essentially arbitrarily-shaped element shapes. In particular, our analysis allows for \emph{curved} element shapes, without the use of non-linear elemental maps. The feasibility of the method relies on the definition of a suitable choice of the discontinuity penalization, which turns out to be explicitly dependent on the particular element shape, but essentially independent on small shape variations. This is achieved upon proving extensions of classical trace and Markov-type inverse estimates to arbitrary element shapes. A further new $H^1-L_2$-type inverse estimate on essentially arbitrary element shapes enables the proof of inf-sup stability of the method in a streamline-diffusion-like norm. These inverse estimates may be of independent interest. A priori error bounds for the resulting method are given under very mild structural assumptions restricting the magnitude of the local curvature of element boundaries. Numerical experiments are also presented, indicating the practicality of the proposed approach.


翻译:使用非线性元素图,我们将流行的内侧-内侧不相干 Galerkin (dG) 方法的可适用性扩大到由极为笼统的、本质上是任意形状的元素形状构成的宫颈,特别是,我们的分析允许使用不使用非线性元素图的元素形状。该方法的可行性取决于对不连续处罚的适当选择的定义,该定义显然取决于特定元素形状,但基本上独立于小形状变异。这是在证明古典痕迹和马可夫型反向估计扩展至任意元素形状时实现的。另外对本质上是任意的元素形状的新的$H1-L_2美元反向估计使得能够证明该方法在类似精密注入的规范中具有内在稳定性。这些反向估计可能具有独立的兴趣。由此得出的方法的先前错误是在非常温和的结构假设下作出的,这些假设限制了元素边界的本地曲线大小。还提出了新的数值实验,说明拟议的方法的实用性。

0
下载
关闭预览

相关内容

【ACML2020】张量网络机器学习:最近的进展和前沿,109页ppt
专知会员服务
54+阅读 · 2020年12月15日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
神经常微分方程教程,50页ppt,A brief tutorial on Neural ODEs
专知会员服务
71+阅读 · 2020年8月2日
专知会员服务
60+阅读 · 2020年3月19日
专知会员服务
159+阅读 · 2020年1月16日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年6月24日
Arxiv
5+阅读 · 2017年12月14日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员