Using decentralized data for federated training is one promising emerging research direction for alleviating data scarcity in the medical domain. However, in contrast to large-scale fully labeled data commonly seen in general object recognition tasks, the local medical datasets are more likely to only have images annotated for a subset of classes of interest due to high annotation costs. In this paper, we consider a practical yet under-explored problem, where underrepresented classes only have few labeled instances available and only exist in a few clients of the federated system. We show that standard federated learning approaches fail to learn robust multi-label classifiers with extreme class imbalance and address it by proposing a novel federated learning framework, FedFew. FedFew consists of three stages, where the first stage leverages federated self-supervised learning to learn class-agnostic representations. In the second stage, the decentralized partially labeled data are exploited to learn an energy-based multi-label classifier for the common classes. Finally, the underrepresented classes are detected based on the energy and a prototype-based nearest-neighbor model is proposed for few-shot matching. We evaluate FedFew on multi-label thoracic disease classification tasks and demonstrate that it outperforms the federated baselines by a large margin.


翻译:使用分散化数据进行联邦培训是缓解医疗领域数据稀缺的一个有希望的新研究方向,然而,与一般物体识别任务中常见的大规模全标签全标签数据相比,当地医疗数据集更有可能仅仅对一组感兴趣的类别有附加说明的图像,因为注释成本高。在本文中,我们认为一个实际但探索不足的问题,即代表性不足的类别只有很少的标签实例,并且只存在于联邦系统的几个客户中。我们表明,标准化的联邦化学习方法未能学习具有极端等级不平衡的强有力多标签分类标签,而未能通过提出新的联邦化学习框架(FedFew)加以解决。FedFew由三个阶段组成,第一阶段利用联邦化的自我监督学习学习学习学习班级的学习。在第二阶段,分散化部分标签数据被用于学习通用分类的基于能源的多标签分类器。最后,基于能源和基于原型近邻模型的近级模型模型模型检测到代表性的分类,并用新的联合化学习框架(FedFedFew) 。我们建议通过少数阶段的基底基比值来测试它。

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
强化学习最新教程,17页pdf
专知会员服务
176+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
Arxiv
14+阅读 · 2022年5月6日
Arxiv
14+阅读 · 2020年12月17日
3D Deep Learning on Medical Images: A Review
Arxiv
12+阅读 · 2020年4月1日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员