The security of deep learning (DL) systems is an extremely important field of study as they are being deployed in several applications due to their ever-improving performance to solve challenging tasks. Despite overwhelming promises, the deep learning systems are vulnerable to crafted adversarial examples, which may be imperceptible to the human eye, but can lead the model to misclassify. Protections against adversarial perturbations on ensemble-based techniques have either been shown to be vulnerable to stronger adversaries or shown to lack an end-to-end evaluation. In this paper, we attempt to develop a new ensemble-based solution that constructs defender models with diverse decision boundaries with respect to the original model. The ensemble of classifiers constructed by (1) transformation of the input by a method called Split-and-Shuffle, and (2) restricting the significant features by a method called Contrast-Significant-Features are shown to result in diverse gradients with respect to adversarial attacks, which reduces the chance of transferring adversarial examples from the original to the defender model targeting the same class. We present extensive experimentations using standard image classification datasets, namely MNIST, CIFAR-10 and CIFAR-100 against state-of-the-art adversarial attacks to demonstrate the robustness of the proposed ensemble-based defense. We also evaluate the robustness in the presence of a stronger adversary targeting all the models within the ensemble simultaneously. Results for the overall false positives and false negatives have been furnished to estimate the overall performance of the proposed methodology.
翻译:深层次学习(DL)系统的安全性是一个极为重要的研究领域,因为这些系统由于不断改进工作业绩以克服具有挑战性的任务而正在若干应用中部署,因此它们的安全性是一个极为重要的研究领域。尽管作出了巨大的承诺,但深层次学习系统很容易被编造对抗性例子,这些例子可能对人类来说是无法察觉的,但可能导致模型的分类错误。防止对基于共同点的技术进行对抗性干扰的保护措施要么被证明容易受到较强的对手的伤害,要么被显示缺乏端对端评价。在本文中,我们试图开发一个新的基于共同点的解决方案,在原始模型中构建具有不同决定界限的防御性模型。通过(1) 将投入转换成一种称为“分辨和制”的方法来构建的分类,但可能导致模型的分类错误性。 防止对基于共同点的技巧进行对抗性干扰,或者显示对基于对敌对点的攻击进行不同的梯度。 本文中,我们试图开发一种基于同一类的虚假的防御性模型,用来构建与原始模型不同的决定界限模型。 我们用一种广泛的实验,即高压型国际-10级的模型,用来展示了所有高压性国际-军事-军事-军事-军事-军事-军事-军事-军事-军事-军事战略-战略-军事-军事-军事-军事-军事-军事-军事-军事-军事-军事-军事-军事-军事-军事-军事-军事-军事-军事-军事-军事-军事-军事-军事-军事-军事-军事-军事-军事-军事-军事-军事-军事-军事-军事-军事-军事-军事-军事-军事-军事-军事-军事-军事-军事-军事-军事-军事-军事-军事-军事-军事-军事-军事-军事-军事-军事-军事-军事-军事-军事-军事-军事-军事-军事-军事-军事-军事-军事-军事-军事-军事-军事-军事-军事-军事-军事-军事-军事-军事-军事-军事-军事-军事-军事-军事-军事-军事-军事-军事-军事-军事-军事-军事-军事-军事-军事-军事-军事-军事-军事-军事-军事-军事-军事-军事-军事-军事-军事-军事-军事-军事-军事-军事-军事-军事-军事-军事-军事-军事-