Deep learning models have achieved great success in automating skin lesion diagnosis. However, the ethnic disparity in these models' predictions, where lesions on darker skin types are usually underrepresented and have lower diagnosis accuracy, receives little attention. In this paper, we propose FairDisCo, a disentanglement deep learning framework with contrastive learning that utilizes an additional network branch to remove sensitive attributes, i.e. skin-type information from representations for fairness and another contrastive branch to enhance feature extraction. We compare FairDisCo to three fairness methods, namely, resampling, reweighting, and attribute-aware, on two newly released skin lesion datasets with different skin types: Fitzpatrick17k and Diverse Dermatology Images (DDI). We adapt two fairness-based metrics DPM and EOM for our multiple classes and sensitive attributes task, highlighting the skin-type bias in skin lesion classification. Extensive experimental evaluation demonstrates the effectiveness of FairDisCo, with fairer and superior performance on skin lesion classification tasks.
翻译:深层学习模型在皮肤损伤诊断自动化方面取得了巨大成功,然而,这些模型预测中的种族差异,即对皮肤皮肤种类的损害代表性通常不足,诊断准确性较低,却很少引起注意。在本文中,我们提出FairDisco,这是一个分解的深层学习框架,与对比性学习框架,它利用额外的网络分支来消除敏感属性,即:皮肤类型信息,从代表处获得公平性信息,另一个反光分支加强特征提取。我们将FairDisco与三种公平方法,即重采、重新加权和属性认知方法,即两个新发布的皮肤损伤类型不同皮肤损伤数据集:Fitzpatrick17k和多样性皮肤图象(DDI)。我们为我们的多年级和敏感属性任务调整了两种基于公平性的衡量标准DPM和EOM,突出皮肤损害分类中的皮肤类型偏差。广泛的实验评估显示了FairDisco的有效性,在皮肤损伤分类任务上表现更加公平和优异。