When evaluating quantities of interest that depend on the solutions to differential equations, we inevitably face the trade-off between accuracy and efficiency. Especially for parametrized, time dependent problems in engineering computations, it is often the case that acceptable computational budgets limit the availability of high-fidelity, accurate simulation data. Multi-fidelity surrogate modeling has emerged as an effective strategy to overcome this difficulty. Its key idea is to leverage many low-fidelity simulation data, less accurate but much faster to compute, to improve the approximations with limited high-fidelity data. In this work, we introduce a novel data-driven framework of multi-fidelity surrogate modeling for parametrized, time-dependent problems using long short-term memory (LSTM) networks, to enhance output predictions both for unseen parameter values and forward in time simultaneously - a task known to be particularly challenging for data-driven models. We demonstrate the wide applicability of the proposed approaches in a variety of engineering problems with high- and low-fidelity data generated through fine versus coarse meshes, small versus large time steps, or finite element full-order versus deep learning reduced-order models. Numerical results show that the proposed multi-fidelity LSTM networks not only improve single-fidelity regression significantly, but also outperform the multi-fidelity models based on feed-forward neural networks.
翻译:在评估取决于差异方程式解决方案的利息数量时,我们不可避免地面临准确性和效率之间的权衡。特别是对于在工程计算中出现的时间依赖问题,在工程计算中,通常会出现一个可以接受的计算预算限制高忠诚度和准确模拟数据的可用性的情况。多纤维代谢模型的出现是克服这一困难的有效战略。它的关键想法是利用许多低纤维模拟数据,不那么准确,但更快地进行计算,用有限的高忠诚度数据来改进近似值。在这项工作中,我们采用了一个新的数据驱动的多纤维性代孕模型框架,即利用长期短期内存(LSTM)网络来模拟已实现的、时间依赖性的问题,以加强对隐性参数值的输出预测,并同时向前推,这是已知对数据驱动模型特别具有挑战性的任务。我们展示了拟议方法的广泛适用性,在各种工程问题中,通过精细度和粗度的中间度数据生成的高和低纤维性数据来改进近似性数据。我们引入了一个新的数据驱动性框架框架框架框架框架框架框架框架框架框架框架框架框架框架框架框架框架框架框架框架框架框架框架框架框架框架框架框架框架框架框架框架框架框架框架框架框架框架框架框架框架框架框架框架框架框架框架框架框架框架框架框架框架框架框架框架框架框架框架框架框架框架框架框架框架框架框架框架框架框架框架框架框架框架框架框架框架框架框架框架框架框架框架框架框架框架框架框架框架框架框架框架框架框架框架框架框架框架框架框架框架框架框架框架框架框架框架框架框架框架框架框架框架框架框架框架框架框架框架框架框架框架框架框架框架框架框架框架框架框架框架框架框架框架框架框架框架框架框架框架框架框架框架框架框架框架框架框架框架框架框架框架框架框架框架框架框架框架框架框架框架框架框架框架框架框架框架框架框架框架框架框架框架框架框架框架框架框架框架框架框架框架框架框架框架框架框架框架框架框架框架框架框架框架框架框架框架框架框架框架框架框架框架框架框架框架框架框架框架框架框架框架框架框架框架框架框架框架框架框架框架框架框架框架框架框架框架框架框架框架框架框架框架框架框架框架框架框架框架框架框架框架框架框架框架框架框架框架框架框架框架框架框架框架框架框架框架框架框架框架框架框架框架框架框架框架框架框架框架框架框架框架框架框架框架框架框架框架框架框架框架框架框架框架框架框架框架框架框架框架框架框架