A key goal of unsupervised learning is to go beyond density estimation and sample generation to reveal the structure inherent within observed data. Such structure can be expressed in the pattern of interactions between explanatory latent variables captured through a probabilistic graphical model. Although the learning of structured graphical models has a long history, much recent work in unsupervised modelling has instead emphasised flexible deep-network-based generation, either transforming independent latent generators to model complex data or assuming that distinct observed variables are derived from different latent nodes. Here, we extend amortised variational inference to incorporate structured factors over multiple variables, able to capture the observation-induced posterior dependence between latents that results from ``explaining away'' and thus allow complex observations to depend on multiple nodes of a structured graph. We show that appropriately parametrised factors can be combined efficiently with variational message passing in rich graphical structures. We instantiate the framework in nonlinear Gaussian Process Factor Analysis, evaluating the structured recognition framework using synthetic data from known generative processes. We fit the GPFA model to high-dimensional neural spike data from the hippocampus of freely moving rodents, where the model successfully identifies latent signals that correlate with behavioural covariates.
翻译:未经监督的学习的一个关键目标是超越密度估计和抽样生成,以揭示观察到的数据所固有的结构结构。这种结构可以表现为通过概率图形模型所捕捉的解释性潜在变量之间的相互作用模式。虽然结构化图形模型的学习历史悠久,但未经监督的建模最近许多工作却强调灵活的深网络生成,或者将独立的潜在潜在生成器转化为模型复杂的数据,或者假设不同的观测变量来自不同的潜伏节点。在这里,我们扩大分解变异推引法,将结构化因素纳入多个变量,能够捕捉到“脱去”所产生潜值之间的观测诱发后后后视依赖性,从而允许复杂的观测取决于结构图的多个节点。我们表明,适当匹配的因素可以有效地与丰富的图形结构中传递的变异信息结合起来。我们在非线性高氏进程系数分析中将框架进行回现,利用已知的基因化过程的合成数据对结构化确认框架进行评估。我们把GPFA模型与由“解释性”所生成的高度恒定型恒定型模型数据相匹配,从而能够顺利地识别恒定恒定恒定恒定恒定的恒定的恒定的恒定的恒定状态。