Subtle periodic signals such as blood volume pulse and respiration can be extracted from RGB video, enabling remote health monitoring at low cost. Advancements in remote pulse estimation -- or remote photoplethysmography (rPPG) -- are currently driven by deep learning solutions. However, modern approaches are trained and evaluated on benchmark datasets with associated ground truth from contact-PPG sensors. We present the first non-contrastive unsupervised learning framework for signal regression to break free from the constraints of labelled video data. With minimal assumptions of periodicity and finite bandwidth, our approach is capable of discovering the blood volume pulse directly from unlabelled videos. We find that encouraging sparse power spectra within normal physiological bandlimits and variance over batches of power spectra is sufficient for learning visual features of periodic signals. We perform the first experiments utilizing unlabelled video data not specifically created for rPPG to train robust pulse rate estimators. Given the limited inductive biases and impressive empirical results, the approach is theoretically capable of discovering other periodic signals from video, enabling multiple physiological measurements without the need for ground truth signals. Codes to fully reproduce the experiments are made available along with the paper.
翻译:从 RGB 视频中可以提取血液体积脉冲和呼吸等子定期信号,使远程健康监测能够低成本地进行。远程脉冲估计的进步 -- -- 或远程光谱成像仪(rPPG) -- -- 目前是由深层学习解决方案推动的。然而,现代方法在基准数据集和联系-PPG 传感器的相关地面真象方面得到了培训和评价。我们提出了第一个非争议性、无监督的信号回归学习框架,以摆脱贴标签视频数据的限制。由于对周期和有限带宽的假设很少,我们的方法能够直接从未贴标签的视频中发现血液体积脉冲。我们发现,在正常的生理波段范围内鼓励稀有的能量光谱和对一系列电光谱的差异足以学习定期信号的视觉特征。我们使用未专门为 REPPG 创建的无标签视频数据进行首次实验,以培养稳健的脉冲测算器。由于微偏差和令人印象深刻的实证结果有限,我们的方法理论上能够从视频中发现其他定期信号,从而得以进行多种生理测量,不需要地面真象信号。我们可以利用的代码来全面复制实验。</s>