Branch and Bound (B&B) is the exact tree search method typically used to solve Mixed-Integer Linear Programming problems (MILPs). Learning branching policies for MILP has become an active research area, with most works proposing to imitate the strong branching rule and specialize it to distinct classes of problems. We aim instead at learning a policy that generalizes across heterogeneous MILPs: our main hypothesis is that parameterizing the state of the B&B search tree can aid this type of generalization. We propose a novel imitation learning framework, and introduce new input features and architectures to represent branching. Experiments on MILP benchmark instances clearly show the advantages of incorporating an explicit parameterization of the state of the search tree to modulate the branching decisions, in terms of both higher accuracy and smaller B&B trees. The resulting policies significantly outperform the current state-of-the-art method for "learning to branch" by effectively allowing generalization to generic unseen instances.
翻译:Bound (B&B) 和 Bound (B&B) 是用于解决混合内线编程问题(MILP) 的精确的树搜索方法。 MILP 的学习分支政策已经成为一个积极的研究领域, 大部分工作都建议模仿强有力的分支规则, 并将其专门用于不同的问题类别。 我们的目标是学习一种在各种不同的分支中概括化的政策: 我们的主要假设是, B&B 搜索树状态参数的参数可以帮助这种一般化。 我们提出了一个新颖的仿真学习框架, 并引入新的输入特征和结构来代表分支化。 MILP 基准实例实验清楚地表明, 将搜索树状态的清晰参数化, 以更精确和较小的 B&B 树来调整分支决定, 其优点是显著地超过当前“ 学习分支” 的状态方法, 有效地允许普通化为普通的不可见实例 。