Motivated by the duplication-correcting problem for data storage in live DNA, we study the construction of constant-weight codes in $\ell_1$-metric. By using packings and group divisible designs in combinatorial design theory, we give constructions of optimal codes over non-negative integers and optimal ternary codes with $\ell_1$-weight $w\leq 4$ for all possible distances. In general, we derive the size of the largest ternary code with constant weight $w$ and distance $2w-2$ for sufficiently large length $n$ satisfying $n\equiv 1,w,-w+2,-2w+3\pmod{w(w-1)}$.
翻译:以DNA活体数据储存的重复更正问题为动机,我们研究以$@ell_1美元计量的不变重量代码的构建。我们通过在组合设计理论中使用包装和组分设计,对非负整数和所有可能距离的最佳耐用代号($_1美元-重量$wleq 4)进行最佳编码的构建。一般来说,我们得出最大耐用代号的大小,其常重为$w$和距离为$2w-2美元,其长度足够大,能满足$1w,w+2,2w+3\pmod{w(w-1)}美元。