Abstract polymer models are systems of weighted objects, called polymers, equipped with an incompatibility relation. An important quantity associated with such models is the partition function, which is the weighted sum over all sets of compatible polymers. Various approximation problems reduce to approximating the partition function of a polymer model. Central to the existence of such approximation algorithms are weight conditions of the respective polymer model. Such conditions are derived either via complex analysis or via probabilistic arguments. We follow the latter path and establish a new condition---the clique dynamics condition---, which is less restrictive than the ones in the literature. We introduce a new Markov chain where the clique dynamics condition implies rapid mixing by utilizing cliques of incompatible polymers that naturally arise from the translation of algorithmic problems into polymer models. This leads to improved parameter ranges for several approximation algorithms, such as a factor of at least $2^{1/\alpha}$ for the hard-core model on bipartite $\alpha$-expanders.
翻译:抽象聚合物模型是加权物体的系统,称为聚合物,配有不兼容关系。与这些模型相关的重要数量是分割功能,即所有相容聚合物组群的加权总和。各种近似问题降低到接近聚合物模型的分割功能。这种近似算法的存在是相关聚合物模型的权重条件。这些条件是通过复杂的分析或通过概率论推导出来的。我们遵循后一种路径,并建立一个比文献中那样限制性的新的条件-区际动态条件---我们建立了一个新的马可夫链。我们引入了新的马可夫链,在这一链条中,结晶动态条件意味着通过将算法问题转化为聚合物模型而自然产生的不相容聚合物的晶体迅速混合。这导致改进了若干近似算法的参数范围,例如对双方(alpha)-Exanders的硬模型的参数至少为2 ⁇ 1/ ALpha}。