In this paper, we propose a general framework of the mutual infomration-maximizing (MIM) quantized decoding for low-density parity-check (LDPC) codes, which can outperform the state-of-the-art lookup table (LUT) decoder by using simple mappings and fixed-point additions for the node updates. Our decoding method is generic in the sense that it can be applied to LDPC codes with arbitrary degree distributions, and it can be implemented based on either the belief propagation (BP) algorithm or the min-sum (MS) algorithm, leading to the MIM quantized BP (MIM-QBP) decoder and the MIM quantized MS (MIM-QMS) decoder, respectively. In particular, we approximate the check node (CN) update of the MIM-QBP decoder by a max-product operation and obtain the MIM-QMS decoder, which simplifies the decoder design and requires less resource consumption. To avoid the precision degradation, we introduce a dynamic reconstruction method to optimize the variable node update for different iterations. Some practical aspects of the proposed decoders such as the design and decoding complexity are also discussed. Simulation results show that the MIM-QBP decoder outperforms the LUT decoders in the waterfall region with both 3-bit and 4-bit precision. Moreover, the 4-bit MIM-QMS decoder can even surpass the floating-point BP decoder in the error-floor region.


翻译:在本文中,我们提出一个用于低密度对等检查(LDPC)代码的相互信息化-最大化(MIM)量化解码总框架,通过简单的绘图和对节点更新的固定点添加,这可以分别超过最先进的查看表(LUT)解码。我们的解码方法是通用的,因为它可以任意分布地适用于LDPC代码,可以基于信仰传播(BP)算法或微量和微量(MS)算法加以执行,导致MIM量化的BP(MIM-QBP)解码和MIM定量的MS(M-QMS)解码。特别是,我们通过一个最大产品操作来接近MIM-QBP解码的检查节点更新,并获得MIM-Q解码,这可以简化解码设计,甚至需要更少的资源消耗量。为了避免精确度的降解,我们将MMMM-M-M-MDMDM 的模型引入了一种动态的模型,以最优的方式将MM-CR 和M-M-S-S-S-S-S-mod ds-degradegradeal dal dal de de disgradudududude dismdle) 。

0
下载
关闭预览

相关内容

【AAAI2021】 层次图胶囊网络
专知会员服务
84+阅读 · 2020年12月18日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
专知会员服务
61+阅读 · 2020年3月19日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
53+阅读 · 2019年9月29日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
MoCoGAN 分解运动和内容的视频生成
CreateAMind
18+阅读 · 2017年10月21日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年1月15日
Adversarial Mutual Information for Text Generation
Arxiv
13+阅读 · 2020年6月30日
Arxiv
8+阅读 · 2019年2月15日
Arxiv
6+阅读 · 2018年4月3日
Arxiv
7+阅读 · 2018年2月26日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
MoCoGAN 分解运动和内容的视频生成
CreateAMind
18+阅读 · 2017年10月21日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员