Mediation analysis is an important tool to study causal associations in biomedical and other scientific areas and has recently gained attention in microbiome studies. Using a microbiome study of acute myeloid leukemia (AML) patients, we investigate whether the effect of induction chemotherapy intensity levels on the infection status is mediated by the microbial taxa abundance. The unique characteristics of the microbial mediators -- high-dimensionality, zero-inflation, and dependence -- call for new methodological developments in mediation analysis. The presence of an exposure-induced mediator-outcome confounder, antibiotic use, further requires a delicate treatment in the analysis. To address these unique challenges in our motivating AML microbiome study, we propose a novel nonparametric identification formula for the interventional indirect effect (IIE), a measure recently developed for studying mediation effects. We develop the corresponding estimation algorithm using the inverse probability weighting method. We also test the presence of mediation effects via constructing the standard normal bootstrap confidence intervals. Simulation studies show that the proposed method has good finite-sample performance in terms of the IIE estimation, and type-I error rate and power of the corresponding test. In the AML microbiome study, our findings suggest that the effect of induction chemotherapy intensity levels on infection is mainly mediated by patients' gut microbiome.
翻译:调解分析是研究生物医学和其他科学领域因果关系的一个重要工具,最近在微生物研究中引起了注意。我们利用对急性髓血清白血病(AML)病人的微生物研究,调查诱导化疗强度水平对感染状况的影响是否由微生物分类的丰度加以调节。微生物调解者的独特性 -- -- 高维度、零通货膨胀和依赖性 -- -- 要求在调解分析中采用新的方法发展。接触诱导的调解人-结果创建者的存在、抗生素的使用,还需要在分析中进行微妙的处理。为了应对我们激励的AML微生物研究中的这些独特挑战,我们提出了用于干预间接效应的新型非参数识别公式(IIE),这是最近为研究调解效应而开发的一项措施。我们利用反概率加权法开发了相应的估算算法。我们还通过建立标准的正常靴区信任期来测试调解效应的存在。模拟研究表明,拟议的方法在IIE估计中具有良好的定值性反应,并且对于相应的磁性微生物检测结果的型误率率和机型性反应力。