We present the task of differential face morph attack detection using a conditional generative network (cGAN). To determine whether a face image in an identification document, such as a passport, is morphed or not, we propose an algorithm that learns to implicitly disentangle identities from the morphed image conditioned on the trusted reference image using the cGAN. Furthermore, the proposed method can also recover some underlying information about the second subject used in generating the morph. We performed experiments on AMSL face morph, MorGAN, and EMorGAN datasets to demonstrate the effectiveness of the proposed method. We also conducted cross-dataset and cross-attack detection experiments. We obtained promising results of 3% BPCER @ 10% APCER on intra-dataset evaluation, which is comparable to existing methods; and 4.6% BPCER @ 10% APCER on cross-dataset evaluation, which outperforms state-of-the-art methods by at least 13.9%.


翻译:我们用一个有条件的基因网络(cGAN)来介绍不同面形攻击检测任务。为了确定身份证(如护照)中的面像是否变形,我们提议一种算法,学会将身份与以信任的参考图像为条件的变形图像暗中分解,使用cGAN。此外,拟议方法还可以恢复关于产生变形第二个主题的一些基本信息。我们在AMSL脸形、MorGAN和EMorGAN数据集方面进行了实验,以证明拟议方法的有效性。我们还进行了交叉数据集和交叉攻击检测实验。我们在内部数据集评价方面取得了3%的BPCER@10%的APCER的可喜结果,这与现有方法相当;在交叉数据集评价方面,我们获得了4.6%的BPCER@10%的APCER的可喜结果,该结果至少13.9%比最新方法高出了13.9%。

0
下载
关闭预览

相关内容

带条件约束的GAN,在生成模型(D)和判别模型(G)的建模中均引入条件变量y(conditional variable y),使用额外信息y对模型增加条件,可以指导数据生成过程。
商业数据分析,39页ppt
专知会员服务
160+阅读 · 2020年6月2日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
110+阅读 · 2020年5月15日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
6+阅读 · 2021年3月11日
Arxiv
9+阅读 · 2021年3月3日
Arxiv
3+阅读 · 2018年6月5日
Arxiv
19+阅读 · 2018年5月17日
Arxiv
7+阅读 · 2018年3月19日
Arxiv
7+阅读 · 2018年1月21日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
相关论文
Top
微信扫码咨询专知VIP会员