The projected gradient descent (PGD) method has shown to be effective in recovering compressed signals described in a data-driven way by a generative model, i.e., a generator which has learned the data distribution. Further reconstruction improvements for such inverse problems can be achieved by conditioning the generator on the measurement. The boundary equilibrium generative adversarial network (BEGAN) implements an equilibrium based loss function and an auto-encoding discriminator to better balance the performance of the generator and the discriminator. In this work we investigate a network-based projected gradient descent (NPGD) algorithm for measurement-conditional generative models to solve the inverse problem much faster than regular PGD. We combine the NPGD with conditional GAN/BEGAN to evaluate their effectiveness in solving compressed sensing type problems. Our experiments on the MNIST and CelebA datasets show that the combination of measurement conditional model with NPGD works well in recovering the compressed signal while achieving similar or in some cases even better performance along with a much faster reconstruction. The achieved reconstruction speed-up in our experiments is up to 140-175.
翻译:预测的梯度下降法(PGD)已经表明,在通过一种基因模型,即一个已经学会数据分布的生成器,以数据驱动的方式恢复以数据驱动的方式描述的压缩信号方面是有效的; 通过对生成器进行测量,可以进一步改进这类反问题的重建; 边界平衡基因对抗网络(BEGAN)实行均衡损失功能和自动编码歧视,以更好地平衡生成器和导体的性能; 在这项工作中,我们调查了一种基于网络的预测梯度下降算法,用于测量-条件遗传模型,以比正常的PGD更快的速度解决反向问题。 我们把NPGD与有条件的GAN/BEGAN结合起来,以评价其在解决压缩感测类型问题方面的效力。 我们在MNIST和CELEBA数据集方面的实验表明,有条件的测量模型与NPGD的结合在恢复压缩信号方面效果良好,同时取得类似或在某些情况下甚至更好的性能,同时大大加快重建。我们实验中实现的重建速度达140-175。