We consider a mono-dimensional two-velocities scheme used to approximate the solutions of a scalar hyperbolic conservative partial differential equation. We prove the convergence of the discrete solution toward the unique entropy solution by first estimating the supremum norm and the total variation of the discrete solution, and second by constructing a discrete kinetic entropy-entropy flux pair being given a continuous entropy-entropy flux pair of the hyperbolic system. We finally illustrate our results with numerical simulations of the advection equation and the Burgers equation.
翻译:我们考虑一个单维的双速度方案,用来近似标度超曲保守部分偏差方程式的解决方案。我们首先估计离散方程式规范以及离散方程式的总变异,然后通过建造离散动动脉酶对流配对,在双曲线系统中给一对连续的对流酶-对流。我们最后用对流方和布尔格方程式的数字模拟来说明我们的结果。