Efficient and robust iterative solvers for strong anisotropic elliptic equations are very challenging. In this paper a block preconditioning method is introduced to solve the linear algebraic systems of a class of micro-macro asymptotic-preserving (MMAP) scheme. MMAP method was developed by Degond {\it et al.} in 2012 where the discrete matrix has a $2\times2$ block structure. By the approximate Schur complement a series of block preconditioners are constructed. We first analyze a natural approximate Schur complement that is the coefficient matrix of the original non-AP discretization. However it tends to be singular for very small anisotropic parameters. We then improve it by using more suitable approximation for boundary rows of the exact Schur complement. With these block preconditioners, preconditioned GMRES iterative method is developed to solve the discrete equations. Several numerical tests show that block preconditioning methods can be a robust strategy with respect to grid refinement and the anisotropic strengths.
翻译:用于强强的厌食性椭圆方程式的高效和稳健的迭代求解器非常具有挑战性。 在本文中, 引入了块状先决条件方法, 以解决某类微粒- 显性保护( MAAP) 的线性代数系统( MIMAP) 。 2012年, Degond {it et al.} 开发了 MMAP 方法, 离散性矩阵结构为2\times2$块结构。 以约合Schur 来补充一系列块状先决条件。 我们首先分析一个自然近似 Schur 补充物, 即原非AP 离散化的系数矩阵。 但是对于非常小的厌食性参数来说, 它往往是奇异的。 然后我们通过使用更合适的近似于Schur 补充物的边界行来改进它的方法。 有了这些块状预设的 GMRES 迭代方法, 来解决离心方方方程式。 一些数字测试显示, 区状前置方法可以是一种强大的战略, 与电网状精细和反向强。