We propose a new data-driven approach for learning the fundamental solutions (i.e. Green's functions) of various linear partial differential equations (PDEs) given sample pairs of input-output functions. Building off the theory of functional linear regression (FLR), we estimate the best-fit Green's function and bias term of the fundamental solution in a reproducing kernel Hilbert space (RKHS) which allows us to regularize their smoothness and impose various structural constraints. We use a general representer theorem for operator RKHSs to approximate the original infinite-dimensional regression problem by a finite-dimensional one, reducing the search space to a parametric class of Green's functions. In order to study the prediction error of our Green's function estimator, we extend prior results on FLR with scalar outputs to the case with functional outputs. Furthermore, our rates of convergence hold even in the misspecified setting when the data is generated by a nonlinear PDE under certain constraints. Finally, we demonstrate applications of our method to several linear PDEs including the Poisson, Helmholtz, Schr\"{o}dinger, Fokker-Planck, and heat equation and highlight its ability to extrapolate to more finely sampled meshes without any additional training.
翻译:我们提出一种新的数据驱动方法,用于学习各种线性部分差异方程式(即Green的功能)的基本解决方案(即Green's 函数),这些方程式具有输入输出功能的样本功能。从功能线性回归理论(FLR)出发,我们估计了在复制内尔·希尔伯特空间(RKHS)的过程中,Green最合适的功能和基本解决方案的偏差术语,这使我们能够规范其平滑性并施加各种结构性限制。我们用一个通用代表符为操作者RKHS使用一个普通代表符,通过一个有限维度参数来将原始的无限回归问题近似,将搜索空间减少到绿色功能的参数的准度类别。为了研究我们的格林函数估计器的预测误差,我们将FLRR的先前结果与功能输出相加。此外,当数据是由非线性PDE在一定的限制下生成时,我们的趋同率甚至维持在错误的设置中。最后,我们展示了我们的方法对若干线性Poisson、Hlmholtz、Schr\krquelexexexexexexexexexextal extractions