We propose a new data-driven approach for learning the fundamental solutions (i.e. Green's functions) of various linear partial differential equations (PDEs) given sample pairs of input-output functions. Building off the theory of functional linear regression (FLR), we estimate the best-fit Green's function and bias term of the fundamental solution in a reproducing kernel Hilbert space (RKHS) which allows us to regularize their smoothness and impose various structural constraints. We use a general representer theorem for operator RKHSs to approximate the original infinite-dimensional regression problem by a finite-dimensional one, reducing the search space to a parametric class of Green's functions. In order to study the prediction error of our Green's function estimator, we extend prior results on FLR with scalar outputs to the case with functional outputs. Furthermore, our rates of convergence hold even in the misspecified setting when the data is generated by a nonlinear PDE under certain constraints. Finally, we demonstrate applications of our method to several linear PDEs including the Poisson, Helmholtz, Schr\"{o}dinger, Fokker-Planck, and heat equation and highlight its ability to extrapolate to more finely sampled meshes without any additional training.


翻译:我们提出一种新的数据驱动方法,用于学习各种线性部分差异方程式(即Green的功能)的基本解决方案(即Green's 函数),这些方程式具有输入输出功能的样本功能。从功能线性回归理论(FLR)出发,我们估计了在复制内尔·希尔伯特空间(RKHS)的过程中,Green最合适的功能和基本解决方案的偏差术语,这使我们能够规范其平滑性并施加各种结构性限制。我们用一个通用代表符为操作者RKHS使用一个普通代表符,通过一个有限维度参数来将原始的无限回归问题近似,将搜索空间减少到绿色功能的参数的准度类别。为了研究我们的格林函数估计器的预测误差,我们将FLRR的先前结果与功能输出相加。此外,当数据是由非线性PDE在一定的限制下生成时,我们的趋同率甚至维持在错误的设置中。最后,我们展示了我们的方法对若干线性Poisson、Hlmholtz、Schr\krquelexexexexexexexexexextal extractions

0
下载
关闭预览

相关内容

【经典书】计算理论导论,482页pdf
专知会员服务
85+阅读 · 2021年4月10日
专知会员服务
77+阅读 · 2021年3月16日
【MIT】反偏差对比学习,Debiased Contrastive Learning
专知会员服务
91+阅读 · 2020年7月4日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
动物脑的好奇心和强化学习的好奇心
CreateAMind
10+阅读 · 2019年1月26日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
6+阅读 · 2018年10月3日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
动物脑的好奇心和强化学习的好奇心
CreateAMind
10+阅读 · 2019年1月26日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员