The aim of this study is the weak convergence rate of a temporal and spatial discretization scheme for stochastic Cahn-Hilliard equation with additive noise, where the spectral Galerkin method is used in space and the backward Euler scheme is used in time. The presence of the unbounded operator in front of the nonlinear term and the lack of the associated Kolmogorov equations make the error analysis much more challenging and demanding. To overcome these difficulties, we further exploit a novel approach proposed in [7] and combine it with Malliavin calculus to obtain an improved weak rate of convergence, in comparison with the corresponding strong convergence rates. The techniques used here are quite general and hence have the potential to be applied to other non-Markovian equations. As a byproduct the rate of the strong error can also be easily obtained.


翻译:这项研究的目的是,在空间使用光谱Galerkin法和后向Euler法的时空分解办法中,与添加性噪声相配的随机卡赫尼-希利亚德方程式的时间和空间分解办法的趋同率较低,这种办法在空间使用光谱Galerkin法,在时间上使用后向的Euler法,在非线性术语之前出现未受约束的操作者,缺乏相关的科尔莫戈罗夫方程式,使得错误分析更具挑战性和难度。为了克服这些困难,我们进一步利用了[7]中提出的新颖办法,并与Malliavin Calculus结合,以获得较弱的趋同率,与相应的强的趋同率相比。这里使用的技术相当笼统,因此有可能适用于其他非马可维恩方程式。作为大误率的一个副产品,也可以轻易获得。

0
下载
关闭预览

相关内容

NeurIPS 2021 | 寻找用于变分布泛化的隐式因果因子
专知会员服务
16+阅读 · 2021年12月7日
NeurIPS 20201接收论文列表发布,2334篇论文都在这了!
专知会员服务
38+阅读 · 2021年11月4日
专知会员服务
109+阅读 · 2020年12月22日
专知会员服务
114+阅读 · 2020年10月8日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
53+阅读 · 2019年9月29日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
已删除
将门创投
8+阅读 · 2019年1月30日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2022年1月16日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
已删除
将门创投
8+阅读 · 2019年1月30日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员