A computationally efficient high-order solver is developed to compute the wall distances, which are typically used for turbulence modelling, peripheral flow simulations, Computer Aided Design (CAD) etc. The wall distances are computed by solving the differential equations namely: Eikonal, Hamilton-Jacobi (H-J) and Poisson. The computational benefit of using high-order schemes (explicit/compact schemes) for wall-distance solvers, both in terms of accuracy and computational time, has been demonstrated. A new H-J formulation based on the localized artificial diffusivity (LAD) approach has been proposed, which has produced results with an accuracy comparable to that of the Eikonal formulation. When compared to the baseline H-J solver using upwind schemes, the solution accuracy has improved by an order of magnitude and the calculations are $\approx$ 5 times faster using the modified H-J formulation. A modified curvature correction has also been implemented into the H-J solver to account for the near-wall errors due to concave/convex wall curvatures. The performance of the solver using different schemes has been tested both on the steady canonical test cases and the unsteady test cases like `piston-cylinder arrangement', `bouncing cube' and `burning of a star grain propellant' where the wall-distance evolves with time.


翻译:开发了一个计算高效的高序求解器,用于计算墙距离,通常用于动荡建模、边际流模拟、计算机辅助设计等。墙距离的计算方法是解决以下差异方程式:Eikonal、Hamilton-Jacobi(H-J)和Poisson。用高序(Explic/concluct schems)计算长距离解脱器的高序(Explical/conclution special)的计算效益已经显现出来。基于本地人工软化(LAD)方法提出了一个新的H-J配方,其结果与Eikonoral配方程式的准确性相当。与使用上风方案的基准H-JSload-Jacobi(H-J)和Poisson等方程式的计算方法相比,用修改后的H-J公式的计算速度提高了5倍。H-J解调调校正(LAD)还被应用于H-J解解算法,以计算出由于 concave/convx 壁壁曲曲曲轴而导致的近墙差错误错误。在Sloyal-crealtrealtal 测试中,使用稳定的硬质测试案例中,用稳定的硬质的计算法测试模型的计算方法的性硬质变变变的计算了稳定的硬质的计算结果。

0
下载
关闭预览

相关内容

机器学习系统设计系统评估标准
【2020新书】Web应用安全,331页pdf
专知会员服务
23+阅读 · 2020年10月24日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
已删除
将门创投
4+阅读 · 2019年6月5日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
保序最优传输:Order-preserving Optimal Transport
我爱读PAMI
6+阅读 · 2018年9月16日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
随波逐流:Similarity-Adaptive and Discrete Optimization
我爱读PAMI
5+阅读 · 2018年2月6日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
Arxiv
0+阅读 · 2022年1月24日
Arxiv
0+阅读 · 2022年1月21日
Arxiv
6+阅读 · 2018年10月3日
Arxiv
3+阅读 · 2017年12月1日
VIP会员
相关资讯
已删除
将门创投
4+阅读 · 2019年6月5日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
保序最优传输:Order-preserving Optimal Transport
我爱读PAMI
6+阅读 · 2018年9月16日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
随波逐流:Similarity-Adaptive and Discrete Optimization
我爱读PAMI
5+阅读 · 2018年2月6日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
Top
微信扫码咨询专知VIP会员